

Phase I & II Geoenvironmental Site Assessment GHX0011 Site Infrastructure Garth Wymott 2

608623-0000-PEV-GHX0011-XX-RP-Y-0001 Issue Number P01 S3 – Suitable for Review and Comment 13/08/2021

Security Classification: OFFICIAL

Security Classification: OFFICIAL

Document History

IssueDateCommentAuthorChk'dP0 I15/01/202 IFirst issue. S3 – Suitable to Review and CommentN/AN/AP0213/08/202 IClient comments incorporated (S3)N/AN/A

PHASE I & II GEOENVIRONMENTAL SITE ASSESSMENT

Land adjacent to HMP Garth HMP Wymott Leyland

Prepared for:

Report Ref: 14-451-R1-2 Date Issued: August 2021

E3P

Taylor Road Trafford Park Urmston M41 7JQ

+ 44 (0) 161 707 9612 https://e3p.co.uk/

Registered in England CRN: 807255262

QUALITY ASSURANCE

PROJECT NUMBER			
VERSION	Version 1	Version 2	
REMARKS	Draft for comment	for comment Updated with clients comments	
DATE	December 2020	August 2021	
PREPARED BY	N Sellars	V Wilkinson	
QUALIFICATIONS	MSci (Hons), FGS	MeSci (Hons)	
CHECKED BY	S Ellis	S Ellis	
QUALIFICATIONS	BSc (Hons), FGS, CEnv	BSc (Hons), FGS, CEnv	
AUTHORISED BY	M. Dyer	M. Dyer	
QUALIFICATIONS	BSc (Hons), FGS, AIEMA, MIEnvSc, CEnv	BSc (Hons), FGS, AIEMA, MIEnvSc, CEnv	

EXECUTIVE SUMMARY

EXECUTIVE SUMMARY			
Site Address	Land adjacent to HMP Garth, HMP Wymott, Leyland		
Grid Reference	E 350560, N 420800		
Site Area	43.53 Ha.		
Proposed Development	E3P understands that Pick Everard are working on behalf of the Ministry of Justice who are considering the future redevelopment of the site for a new prison facility.		
	The subject site is an irregular shaped parcel of land located at HM Wymott Prison in Ulnes Walton, Leyland. The south east sector is within HM Wymott Prison, with the remainder of the site located to the north. The land to the north of the prison forms part of a small farm holding that occupies the land with a number of agricultural buildings in the centre. The land surrounding the farm is separated into various paddocks for livestock		
Current Site Use	including; pigs, sheep and horses. A series of sporadic semi-mature and mature trees are present across site. A dense woodland area is present in the north west. A boiler house is present in the west and a sewage pumping station is present to the west of Pump House Lane. A farm building which is a former military store is located in the far east of the site. An additional smaller pond is located in the northwest corner of the site.		
	Within the prison boundary, to the east of the cell blocks, the site comprises exercise land, military style obstacle course and a shower/changing room block. Due to the coronavirus outbreak the fields had been left semi abandoned with the grass and obstacle course being overgrown. In the south east of the site a temporary coronavirus ward has been erected to allow prisoners to be segregated in the case of an outbreak within the prison.		
		east sector is gained through HM Wymott Prison. n sector is from Pump House Lane and Willow Road.	
Site History	Historical mapping suggests that the site was predominantly agricultural land with a number of small ponds until the 1970's when site a number of tracks and structures (possible storage shelters) are present. A sewage pumping station is recorded in the east of the site, pre 2020 to the present day.		
	Drift Geology	Glacial Till – CLAY, SAND, GRAVEL across the site. Head – CLAY, SILT, SAND, GRAVEL - West	
	Bedrock Geology	Singleton Mudstone Member - MUDSTONE	
	Faults	There are no faults in the vicinity of the site.	
Environmental Setting	Hydrogeology	Secondary undifferentiated strata and Secondary A aquifer (drift) overlying Secondary B aquifer (solid). No groundwater abstractions have been identified within a 1 km radius.	
	Hydrology	Two ponds and a drainage network are present on site.	
	Flood Risk	The west of the site is located in a Flood Zone 3 with a high probability of flooding; therefore a Flood Risk Assessment will be required.	

Natural Landform and Geomorphology	The subject site is underlain by glacial till deposits which were laid down by the deposition of melting ice shelf in the most recent glaciation. Head deposits are also present in the west of the site which are formed by the slow flow of waterlogged soil and unsaturated superficial deposits associated with meltwater from thawing ice lenses. The underlying rock formations are associated with the Singleton Mudstone Member. A stream network and pond are present in the west of the site. The south east sector appears to have been levelled to create the sports pitches.	
Utility connections are available throughout Pump House Lane and Ric Lane. A foul sewer runs north to south across the south east sector. An 1 electricity cable runs to the north of the prison.		
Landfill Sites and Ground Gases There are no landfill sites within 250 m. The Envirocheck reportant potentially infilled ground relating to former water features on site. His mapping confirms the presence of infilled ponds on site.		
Radon	Lower probability radon area (less than 1% of homes are estimated to be at or above the Action Level) – No further action	
Coal Mining/Land Stability	The site is not located in a Coal Mining Reporting Area or Development High Risk Area, therefore no further assessment is required.	
Brine Workings	The site is not located in the Cheshire Brine Compensation District.	
Hazardous Installations	No hazardous installations that could potentially prejudice the proposed construction of highly sensitive residential (prison) dwellings have been identified within influencing distance of the subject site.	

GROUND INVESTIGATION

GROUND INVESTIGATION	yn
Ground Investigation Works	 E3P has completed an intrusive ground investigation comprising: 25 x window sample boreholes, Construction of environmental monitoring installations.
	Made Ground - 0.0 m bgl to >3.45 m bgl
	Made Ground deposits were encountered within the majority of exploratory hole locations to depths of between 0.20 m and in excess of 3.45 m bgl (WS101) although, in general, Made Ground was encountered to a depth of less than 1.50 m bgl.
Ground Conditions	Made Ground deposits generally comprise a reworked topsoil of dark brown silty clayey fine to medium sand with sandstone, ceramic and brick. Beneath the reworked topsoil, Made Ground comprises dark brown gravelly fine to coarse sand and soft to firm gravelly clay with mudstone, brick and concrete.
	A hydrocarbon odour was noted in WS106 between 0.80 m to 1.00 m bgl. A relict topsoil layer was identified between 0.40 m and 0.60 m bgl and organic matter was also noted in WS106 between 0.80 m to 1.50 m bgl.
	A strong organic odour was noted in the reworked clay in WS118 between 0.60 m and 1.50 m bgl.
	WS101 adjacent to the existing boiler house refused on a possible obstruction at 3.45 m bgl.

TOPSOIL - 0.00 m bgl to 0.32 m bgl

Natural topsoil was encountered in localised areas as dark brown slightly clayey fine to medium SAND with rootlets in the northern sector and as soft to firm dark brown to black CLAY in the south east sector. Topsoil depths ranged from between 0.23 m to 0.32 m bgl.

DRIFT - 0.10 m bgl to >5.45 m bgl

Drift deposits were encountered in all exploratory locations, with the exception of WS101 where the full depth of Made Ground could not be proven. The drift deposits were encountered to depths in excess of 5.45 m bgl.

Ground Conditions

The drift deposits are fairly consistent, generally comprising firm medium strength to very stiff very high strength greyish brown gravelly CLAY with mudstone.

Localised lenses of granular drift deposits were encountered, generally comprising medium dense greyish brown clayey silty gravelly fine to medium SAND with mudstone. Loose GRAVEL was identified in WS103 between 1.00 m to 2.00 m bgl.

SOLID

The solid bedrock geology was not encountered during the ground investigation. BGS boreholes in the vicinity of the site suggest that the drift deposits are present to depths in excess of 15.00 m bgl.

GROUNDWATER – Groundwater was encountered as seepages between 1.00 and 3.50 m bgl during the site investigation with monitoring recording groundwater levels between 0.40 and 3.38 m bgl.

CONTAMINATED LAND ASSESSMENT

The Tier I Human Health Assessment has identified elevated concentrations of non-volatile PAH compounds and hydrocarbon fractions C12-C35 (aromatic).

The risk to chronic human health associated with the elevated concentrations of non-volatile PAH and TPH compounds can be mitigated through the installation of a suitable cover system in all areas of landscaping and public open space where Made Ground remains to remove any potential for direct exposure to impacted soils.

The specific design and installation process for the appropriate cover systems will be clearly defined within the site remediation and enabling works strategy.

Human Health

With regards to the elevated TPH C12-C16, these compounds present a potential volatilisation to indoor air risk. These elevated concentrations have only been identified within one location (WS106) and are therefore considered to be a localised hotspot. Therefore, during a process of cut/fill enabling works, a hotspot removal should be undertaken where these soils may be chemically validated to assess chemical suitability for retention on site in an area of no future sensitivity.

Chemical analysis of the natural drift deposits has identified these soils to be acceptable for use as subsoil within the proposed areas of landscaping; however, further chemical validation samples will be required to confirm this.

Human Health	Areas of natural topsoil are present in the north of the site. Six samples have been tested to date which suggest that the topsoil is suitable for re-use. Further chemical validation samples will be required to confirm this.
	The Tier 1 assessment has identified exceedances of the EQS levels for cadmium, chromium (III), copper, lead, nickel, selenium and zinc.
	The exceedances of heavy metals are likely to be associated with the Made Ground identified in the southern and eastern sectors.
	The site is underlain by cohesive drift deposits to depths in excess of 5.45 m which will inhibit lateral migration to on-site surface waters features and vertical migration to the underlying Secondary A and B aquifers. Therefore, impacted perched groundwater is not likely to migrate towards the controlled water receptors. In addition, the sensitivity of the aquifers is reduced, given the absence of any potable groundwater abstractions within 1.0 km.
Controlled Waters	Where leachate analysis has been undertaken, this can overstate the risk and is not wholly representative of the site characterisation.
	The m-BAT and Pb screening tools have confirmed, the on-site surface water features are not at risk from the heavy metal contaminants identified within Table 8.4. Therefore, although heavy metals exceed EQS thresholds, they do not pose a risk to controlled waters as they are not bioavailable.
	It should also be noted the site is currently uncapped and the proposed development will largely encapsulate the site, thus limiting the potential for infiltration and therefore leaching potential.
	Given the general low soluble nature of the identified contaminants of concern, in addition to the presence of low permeability clay soils, it is considered there is unlikely to be any degree of unacceptable risk to the controlled water receptors and the wider environ.
Ground Gas	Preliminary ground gas monitoring suggests that the site should be classified as CS2 due to elevated concentrations of carbon dioxide (up to 8.6 % v/v) and new prison structures will likely require specialist protection measures.
Potable Water Infrastructure	This will need to be confirmed following the completion of a UKWIR risk assessment. Post-remediation and enabling works ground conditions may be different from those identified during this site investigation.

GEOTECHNICAL ASSESSMENT

Underground Obstructions	Significant obstructions will be present beneath the existing structures. A possible obstruction was noted in WS101 at 3.45 m bgl. During a phase of cut-and-fill enabling works to create a developable platform, all below-ground obstructions will require grubbing out to the base of the Made Ground to enable the construction of proposed plots.
Allowable Bearing Pressure	The underlying natural clay drift deposits have been assessed as being firm low strength to very stiff very high strength with a net allowable bearing pressure (ABP) in the order of 41-135 kN/m² at circa 1 m bgl increasing to 83-447 kN/m² at circa 2 m bgl.
T 1000a10	Localised areas of granular drift deposits were assessed as being loose to medium dense, having a net ABP of between 81-121 kN/m² between 1.0 -4.0 m bgl.

	Based on the assessment of the relative undrained shear strength, relative in-situ densities and corresponding safe net allowable bearing pressure, the suitable target founding stratum has been identified as the underlying firm to very stiff glacial clays and localised areas of medium-dense sands.
	Where proposed levels remain similar, it is likely that proposed structures could be constructed using strip or trench fill foundations bearing on the underlying firm to very stiff clays or medium dense sands, subject to the required bearing stratum being present at a shallow depth and the absence of tree influence.
Foundation Options	Where the suitable founding stratum is greater than 2.50 m bgl and in areas of deep Made Ground an engineered foundation solution will be required. Where structures are located within the vicinity of the infilled ponds, ground improvement may be required.
	There is the potential for peat or organic soils to be present in the location of the existing ponds. Dependent on development levels, structures in these areas may require a driven pile foundation.
	Foundation depths should take account of the presence of existing and proposed trees, with foundations deepened locally to mitigate the potential for volumetric instability attributed to fluctuations in moisture content, in accordance with the requirements of NHBC standards.
Building Floor Slabs	Ground-bearing floor slabs will be viable but will require detailed design to accommodate variability of the formation and account for differential settlement. The slab would need to be constructed utilising a sub-base with the thickness designed by a structural engineer to ensure that settlement tolerances are taken into consideration.
Heave Precautions	The Clay soils are classified as Low to Medium Volume Change Potential and where present at a shallow depth within the conjectured zone of potential tree influence, heave precautions will be required within the construction of a shallow foundation and to the underside of floor residential floor slabs.
Soakaway Drainage	The Made Ground and underlying soils are cohesive in nature and impacted by low-level inorganic hydrocarbon compounds which would preclude the use of infiltration drainage systems.
Sulphate Assessment	Concrete classification will be DS1 AC1s.
	Granular soils can be re-engineered to ensure 5% within the subgrade during favourable climatic conditions.
CBR Design %	Natural clay soils will provide a CBR in the order of 3–5% during drier climatic periods. However, if water is allowed to shed onto the formation, the CBR will reduce to < 2%, which will require specialist engineering of the subgrade.
Cut/Fill	Development levels unknown at this time; however, an element of cut-and-fill works will be required to prepare the development platform.
	Shallow bedrock has not been encountered.
Civil Engineering Excavations	Made Ground present beneath the site is likely to be loosely compacted and possibly prone to collapse. Perched groundwater may also require localised pumping in excavations.
Waste Characterisation	Any material that is to be disposed off-site should undergo assessment using Technical Guidance WM3: Waste Classification – Guidance on the classification and assessment of waste.

Land adjacent to HMP Garth

Phase I & II Geoenvironmental Site Assessment August 2021

RECOMMENDATIONS

Based on the findings of the geoenvironmental site assessment, the following additional works are recommended to be completed in due course:

- Further investigation of inaccessible areas.
- Plot-specific foundation schedule (upon receipt of the final development levels).
- Remediation and enabling works strategy.
- Onstruction Phase Surface Water Management Plan.

Table of Contents

EX	ECUTIV	E SUMMARY	1
1	INTE	ODUCTION	10
	1.1.	Background	
	1.2.	Proposed Development	
	1.3.	Objectives	
	1.4.	Scope of Works	
	1.5.	Limitations	
	1.6.	Confidentiality	
	1.0.	Confidentiality	1 1
		SETTING	
	2.1.	Site Details	
	2.2.	Current Site Use	
	2.3.	Surrounding Area	13
3.	SITE	HISTORY	14
	3.1.	On-Site Historical Development	
	3.2.	Off-Site Historical Development	
	3.3.	Planning History	
	3.4.	Anecdotal Information	
		RONMENTAL SETTING	
	4.1.	Geology and Hydrogeology	
	4.2.	Natural Landform and Geomorphology	
	4.3.	Geotechnical Data	
	4.4.	Coal Mining	
	4.1.	Radon Risk Potential	
	4.2.	Preliminary Geotechnical Assessment	
	4.3.	Hydrology	
	4.4.	Industrial Land Uses	
	4.5.	Sensitive Land Uses	
	4.6.	Site Sensitivity Assessment	22
5.	CON	SULTATIONS	24
	5.1.	Contaminated Land Officer	24
	5.2.	Landfill Sites and Waste Treatment Sites	24
	5.3.	Regulatory Database	24
	5.1.	Unexploded Ordnance	24
6.	INITI	AL CONCEPTUAL SITE MODEL	26
7.	GRO	UND INVESTIGATION	29
	7.1.	General Overview	
	7.2.	Limitations of the Investigation	
	7.3.	Scope of Investigation	
	7.4.	In-Situ Standard Penetration Testing (SPT)	
	7.5.	Laboratory Analysis	
8.	CDO	UND AND GROUNDWATER CONDITIONS	ວາ
	8.1.	Summary of Ground Conditions	
	8.2.	Made Ground	
	8.3.	TOPSOIL	
	8.4.	Drift Deposits	
	J		

	8.5.	Solid Geology	33
	8.6.	Groundwater	
	8.7.	Visual and Olfactory Evidence of Contamination	
	8.8.	Soil Consistency	
	8.9.	Consolidation	
	8.10.	Particle Size Distribution	
	8.11.	Soil Density/Moisture Content Relationship	
	8.12.	Soil Plasticity	
	8.13.	pH and Sulphate	48
9.		I QUALITATIVE CONTAMINATED LAND RISK ASSESSMENT	
	9.1.	Deviating Samples	
	9.2.	Human Health Risk Assessment	
	9.3.	Controlled Waters Risk Assessment	
	9.3.1		
	9.3.2		
	9.3.3	9	
	9.3.4		
	9.4.	Ground Gas	
	9.1. 9.2.	Investigation Rationale	
	9.2. 9.2.1		
	9.2.1	,	
	9.2.3		
	9.2.4		
	9.2.5		
	9.2.6		
	9.3.	Residential Building Gas Risk Mitigation	
	9.4.	Potable water supply	
	9.5.	Conceptual Site Model	
10	O. GEO	FECHNICAL ASSESSMENT	71
	10.1.	Proposed Development	71
	10.2.	Summary of Ground Conditions	71
	10.3.	Site Preparation	
	10.4.	Foundation Conditions and Assessment of Potential Bearing Capacities	
	10.5.	Ground Floor Slabs	76
	10.6.	Heave Precautions	
	10.7.	Highways Construction	
	10.8.	Drainage	
	10.9.	Concrete Durability	
	10.10.	Excavations	
	10.11.	Construction Activity and Inspection	
	10.12.	Geotechnical Risk Register	
	10.13.	Further Works	82
1		CLUSIONS AND RECOMMENDATIONS	
	11.1.	Contaminated Land Assessment	83

Land adjacent to HMP Garth

Phase I & II Geoenvironmental Site Assessment August 2021

APPENDIX I LIMITATIONS	85
APPENDIX II GLOSSARY	87
APPENDIX III DRAWINGS	90
APPENDIX IV PHOTOGRAPHS	92
APPENDIX V E3P EXPLORATORY HOLE LOGS	98
APPENDIX VI CHEMICAL TESTING RESULTS	99
APPENDIX VII ORIGIN OF TIER I GENERIC ASSESSMENT CRITERIA	100
APPENDIX VIII GEOTECHNICAL TESTING RESULTS	102

DRAWING LIST

_	4 4-4	-		~ ··		-
Ί	4-451	-R1-	-()()1	- Site	Location	Plan

14-451-R1-002 - Proposed Development Plan

14-451-R1-003 - Historical Features Plan

14-451-R1-004 - Site Features Plan

14-451-R1-005 - Exploratory Hole Location Plan

14-451-R1-006 - Depth of Made Ground Plan

14-451-R1-007 - Depth of Topsoil Plan

14-451-R1-008 - Depth to Founding Strata Plan

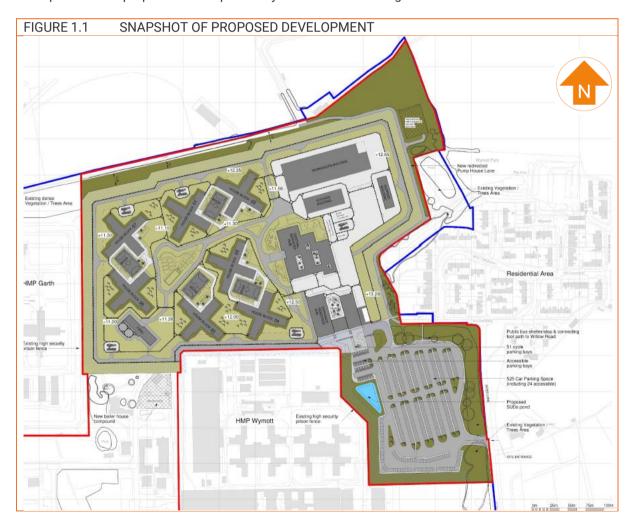
14-451-R1-009 - Concept Foundation Zoning Plan

14-451-R1-010 - Conceptual Site Model

14-451-R1-018 - Contamination Issues Plan

1. INTRODUCTION

1.1. BACKGROUND


E3P has been commissioned by Pick Everard to undertake a detailed Phase I and II Geoenvironmental Site Assessment for a parcel of land adjacent to HMP Garth, HMP Wymott, Leyland.

This report is required to determine potential contaminated land liabilities, remediation requirements and geotechnical engineering works that will be required as part of the proposed development for a proposed new prison facility.

1.2. PROPOSED DEVELOPMENT

E3P understands that Pick Everard are working on behalf of the Ministry of Justice for hybrid planning application seeking: Outline planning permission (with all matters reserved except for access, parking and landscaping) for a new prison (up to 74,531.71 sqm GEA) (Class C2A) within a secure perimeter fence following demolition of existing buildings and structures and together with associated engineering works; Outline planning permission for a replacement boiler house (with all matters reserved except for access); and Full planning permission for a replacement bowling green and club house (Class F2(c)).

A snapshot of the proposed development layout is indicated in Figure 1.1.

1.3. OBJECTIVES

The objectives of the geoenvironmental assessment are as follows:

- Undertake a preliminary stage of sampling and analysis to provide an overview of environmental issues identified.
- Assess the implications of any potential environmental risks, liabilities and development constraints associated with the site in relation to the future use of the site and in relation to off-site receptors.
- Assess the geotechnical information and provide preliminary recommendations in relation to foundations, pavement construction and floor slabs.
- Provide recommendations regarding future works required.

1.4. SCOPE OF WORKS

The scope of work includes the following elements:

- Detailed desk study;
- Design of suitable intrusive ground investigation;
- Window sample probeholes with, and construction of, environmental monitoring installations;
- In-situ geotechnical testing;
- Chemical and geotechnical laboratory analysis;
- Groundwater monitoring and sampling;
- Ground gas monitoring;
- © Contamination risk assessment and conceptual site model;
- Geotechnical assessment and interpretation; and
- Factual and interpretive reporting.

1.5. LIMITATIONS

The limitations of this report are presented in Appendix I.

1.6. CONFIDENTIALITY

E3P has prepared this report solely for the use of the client and those parties with whom a warranty agreement has been executed, or with whom an assignment has been agreed. Should any third party wish to use or rely upon the contents of the report, written approval must be sought from E3P; a charge may be levied against such approval.

2. SITE SETTING

2.1. SITE DETAILS

Site Address	Land adjacent to HMP Garth, HMP Wymott, Leyland
National Grid Reference	E 350560, N 420800
Site Area	43.53 Ha.

All acronyms used within this report are defined in the Glossary presented in Appendix II.

A site location map is presented in Appendix III as Drawing 14-451-001.

2.2. CURRENT SITE USE

E3P has undertaken a site walkover of the entire site and a description of the key findings is summarised in Table 2.1.

TABLE 2.1 SITE DESCRIPTION

Occupancy/Use			
Occupancy/ose	The subject site is an irregular shaped parcel of land located at HM Wymor Prison in Ulnes Walton, Leyland. The south east sector is within HM Wymor Prison, with the remainder of the site located to the north.		
	The land to the north of the prison forms part of a small farm holding that occupies the land with a number of agricultural buildings in the centre. The land surrounding the farm is separated into various paddocks for livestock including pigs, sheep and horses. A series of sporadic semi-mature and mature trees are present across site. A dense woodland area is present in the north west. A boiler house is present in the west and a sewage pumping station is present to the west of Pump House Lane. A farm building which is a former military store is located in the far east of the site. A small pond is located in the north west corner of the site.		
	Within the prison boundary, to the east of the cell blocks, the site comprises a exercise land, military style obstacle course and a shower/changing room block. Due to the coronavirus outbreak the fields had been left semi abandoned with the grass and obstacle course being overgrown. In the south east of the site a temporary coronavirus ward has been erected to allow prisoners to be segregated in the case of an outbreak within the prison.		
Surface Cover (%)	Buildings	10%	
	Hardstand	10%	
	Soft Cover	80%	
Structures	Agricultural buildings are located in the centre of the site. The existing boiler house is present in the west. A sewage pumping station is located to the west of Pump House Lane. A building used as a separate ward for coronavirus in present in the south east, along with changing rooms. A farm building/former military store is located in the far east of the site.		
Access	Access to the south east sector is through HM Wymott Prison. Access to the northern sector is from Pump House Lane and Willow Road.		
Slope	There is little variance in topography.		

Retaining Structures	No retaining structures are apparent.
Vegetation/Ecology	Vegetation is present across the site with areas of overgrown grasses, although the majority of the grass is short due to livestock grazing.
	A series of sporadic semi-mature and mature trees are present across site. A dense woodland area is present in the north west.
	A tree survey has been undertaken to support the planning application with findings recorded within Arboricultural Impact Assessment and Method Statement (Ref: 08623-0000-TYL-GHX0000-XX-RP-X-0002, Dated 27th July 2021).
Hazardous Material Storage	No above-ground storage tanks (ASTs) or underground storage tanks (USTs) were observed at the site during the preliminary site walkover. Infrastructure associated with the sewage pumping works is present in the centre of the site. Due to the previous nature of the site, it is unlikely that hazardous materials storage will have occurred on the site.
Asbestos-Containing Material (ACM)	No evidence of ACM was noted during the site walkover. A pre-demolition asbestos survey will be required within all existing buildings within the site boundary.
Polychlorinated Biphenyls (PCBs)	There is no equipment identified that may contain PCBs within the site boundary.
Waste Storage	Potentially hazardous waste streams are unlikely to be generated at the site and none were observed during the preliminary site inspection.
Drainage	Utility connections are available throughout Pump House Lane and Ridley Lane. A foul sewer runs north to south across the south east sector.

2.3. SURROUNDING AREA

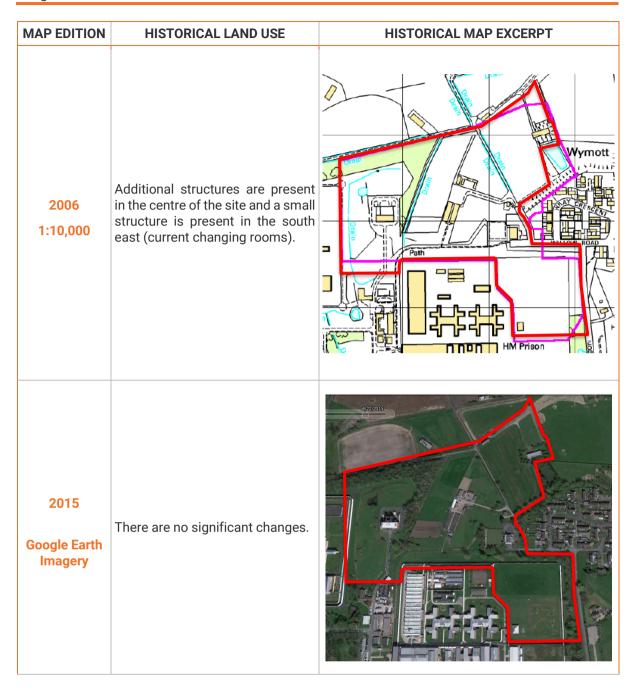
The surrounding area land uses are summarised in Table 2.2.

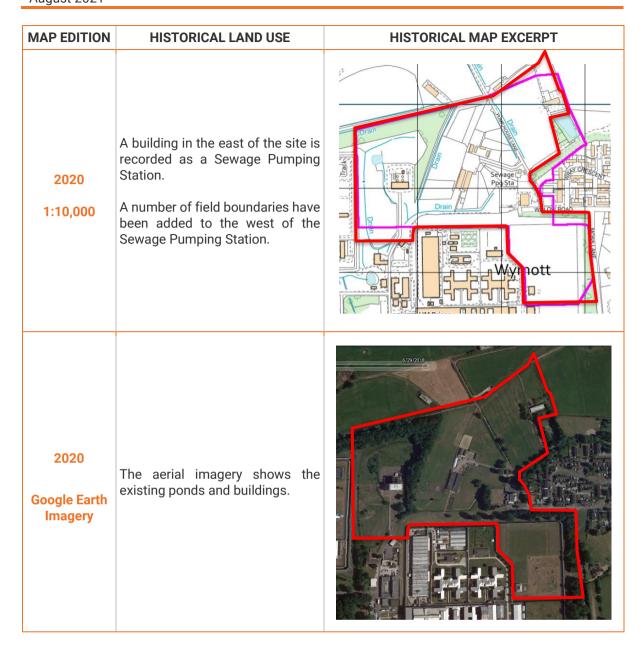
TABLE 2.2 SURROUNDING LAND USES

DIRECTION	LAND USE
North	Agricultural land
East	Residential units and agricultural land.
South	HM Prison
West	HM Prison

3. SITE HISTORY

3.1. ON-SITE HISTORICAL DEVELOPMENT


A review of historical mapping and historical aerial imagery pertinent to the site is summarised in Table 3.1. In addition, historical site features are presented on Drawing No 14-451-003 in Appendix III.


TABLE 3.1 HISTORICAL DEVELOPMENT

MAP EDITION	HISTORICAL DEVELOPMENT HISTORICAL LAND USE HISTORICAL MAP EXCERPT		
1847-1849 1:10,560	The site is agricultural land with a number of different field parcels. Ponds are recorded in the west and centre of the site. Roads run through the south and centre of the site.	Pall Male	
1894 1:10,560	A farm is recorded in the south of the site. There are no other significant changes.	m Stock's Farm	

MAP EDITION	HISTORICAL LAND USE	HISTORICAL MAP EXCERPT
1912-1913 1:10,560	A well and Moss Cottages are recorded in the south west of the site.	Eu. 34.2 Moss Cattonex Carter's Farm
1929-1931 1:10,560	Moss Lane Farm and Moss House are recorded in the south west. A field boundary has been removed in the east.	Moss Linne Farm Moss House So Coltages Carter's Farm
1983-1984 1:10,560	A rectangular building is recorded in the far east of the site. Two large rectangular buildings are also present in the central sector, in the east and one is present at the western boundary. When viewed within the wider area, it appears that these are possibly MOD storage facilities. This is confirmed by the UXO Desk study (report ref: PRA-20-1311 October 2020) which states:	Fath HM Prison

MAP EDITION	HISTORICAL LAND USE	HISTORICAL MAP EXCERPT
1983-1984 1:10,560	During WWII, the Site remained open fields, however one explosives storage house (ESH) was built on Site with associated rail tracks (representing a small portion of the wider dispersed depot site). Additional tracks leading to other ESHs crossed the Site also.	See previous page
Continued	A number of paths, tracks and drains are marked across the site. Carter's Farm, Moss Lane Farm, Moss House and Moss Cottages are no longer present. The road through the south of the site is no longer present.	
1990-1995 1:10,000	The pond in the centre of the site and one of the ponds in the west have been infilled. A square building is present in the west. The tracks are no longer present.	HM P ison
2001 1:10,000	Additional drains are present in the west of the site.	Path

3.2. OFF-SITE HISTORICAL DEVELOPMENT

A review of potentially contaminative uses identified on historical Ordnance Survey maps within a 250 m radius of the site is summarised in Table 3.2.

TABLE 3.2 SURROUNDING HISTORICAL DEVELOPMENT

SURROUNDING FEATURE	DISTANCE	DATES	DIRECTION
Ponds Then: no longer marked	10 m – 250 m	Pre 1847-Present	North, East, South, West
Electricity Substation Then: no longer marked	110 m	Pre 1970 – Pre 1983 Pre 1983–Present	South East
Tanks Then: no longer marked	150 m – 250 m	Pre 1970 – Pre 1983 Pre 1983–Present	South
Works Then: no longer recorded	200 m	Pre 1983-Present	South East

Land adjacent to HMP Garth

Phase I & II Geoenvironmental Site Assessment August 2021

3.3. PLANNING HISTORY

E3P has undertaken a review of online planning records held by Chorley Council and no environmentally pertinent information has been obtained for the site.

3.4. ANECDOTAL INFORMATION

No anecdotal information was obtained following a web-based search.

4. ENVIRONMENTAL SETTING

August 2021

4.1. GEOLOGY AND HYDROGEOLOGY

The British Geological Survey (BGS) map for the site, (1:50,000 Solid and Drift editions) and online records indicate the site is underlain by the geological sequence presented in Table 4.1.

TABLE 4.1 SUMMARY OF UNDERLYING GEOLOGY

GEOLOGICAL UNIT	CLASSIFICATION	DESCRIPTION	AQUIFER CLASSIFICATION
Drift	Glacial Till	SAND, CLAY and GRAVEL	Secondary undifferentiated
	Head (West)	CLAY, SILT, SAND, GRAVEL	Secondary A aquifer
Solid	Singleton Mudstone Member	MUDSTONE	Secondary B aquifer

TABLE 4.2 SUMMARY OF BGS BOREHOLE RECORDS

LOCATION	DEPTH	TOPSOIL	DRIFT	SOLID
150 m W	15.0 m	0.4 m	CLAY and SAND >15.0 m	Not encountered

There are no faults in the vicinity of the site.

The Envirocheck report indicates that the site is not located within a groundwater source protection zone. Furthermore, there are no groundwater abstractions within 1 km of the site.

Based on the local topography and the location of surface watercourses, it is considered likely that shallow groundwater, if present, will flow in a southerly direction, towards the River Lostock.

4.2. NATURAL LANDFORM AND GEOMORPHOLOGY

Based on the initial geological assessment, a review of available topographic data and pertinent mapping, E3P has undertaken a preliminary geomorphological assessment of the landform and its possible mechanism for formation.

The subject site is underlain by glacial till deposits which were laid down by the deposition of a melting ice shelf in the most recent glaciation. Head deposits are also present in the west of the site which are formed by the slow flow of waterlogged soil and unsaturated superficial deposits associated with meltwater from thawing ice lenses. The underlying rock formations are associated with the Singleton Mudstone Member.

A stream network and pond are present in the west of the site.

The south east sector appears to have been levelled to create the exercise land.

4.3. GEOTECHNICAL DATA

Geotechnical data presented within a commercially available environmental database is summarised in Table 4.3.

TABLE 4.3 SUMMARY OF GEOTECHNICAL DATA

HAZARD	DESIGNATION
Shrink-Swell Clay	Very low risk
Landslides	Very low risk
Ground Dissolution	No hazard
Compressible Ground	No hazard
Collapsible Deposits	Very low risk
Running Sand	Very low risk

4.4. COAL MINING

The site is not located in a Coal Mining Reporting Area or Development High Risk Area, therefore no further assessment is required.

4.1. RADON RISK POTENTIAL

The Envirocheck report indicates the site is situated in an area where less than 1% of homes are above the "Action Level" and that the BGS reports that full radon protective measures are not necessary in the construction of new dwellings or extensions.

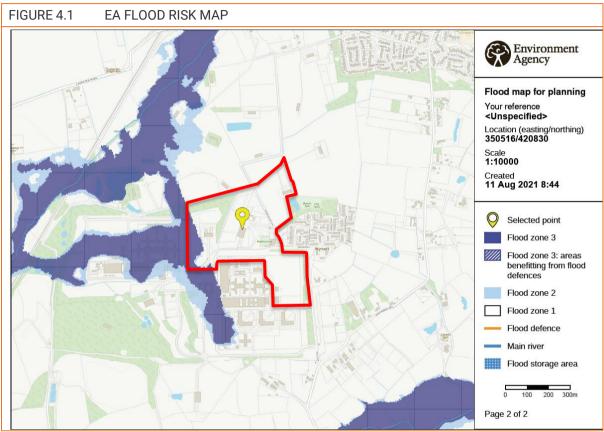
4.2. PRELIMINARY GEOTECHNICAL ASSESSMENT

Based on the desk-study information, the following geotechnical assessment has been made:

- Existing buildings will require demolition, with all relict foundations grubbing out, prior to the construction of the proposed development.
- Made Ground is likely to be present in localised areas associated with former buildings and infilled ponds.
- Historically infilled ponds are present within the site boundary, which are potential sources of alluvial deposits, silts and possible organic peat deposits in addition to potential depths of Made Ground. Investigation will be required in order to assess these and undertake in-situ geotechnical testing to determine the likely foundation solution for plots in these areas.

4.3. HYDROLOGY

Surface water features within 250 m of the subject site are summarised in Table 4.4.


TABLE 4.4 SURFACE WATER FEATURES

SURFACE WATER FEATURE	QUALITY	DISTANCE (m)	DIRECTION
Wymott Brook	C – Fairly Good	607 m	West
River Lostock	C – Fairly Good	670 m	South

Two ponds and a drainage network are present on site.

The site is predominantly located within a currently defined "Flood Risk Zone 1"; defined as land assessed as having less than 1 in 1,000 annual probability of river or sea flooding (< 0.1%). The west of the site is located in a Flood Zone 3 with a high probability of flooding, therefore a Flood Risk Assessment will be required. The Environment Agency (EA) Flood Risk Map for the site is presented as Figure 4.1.

A Flood Risk Assessment (Ref: 608623-0000-HYD-GHX0000-XX-RP-D-0001, Dated 5th August 2021) has been undertake for the site. A detailed assessment of fluvial flood risk based on updated flood risk modelling provided by the EA has identified all of the subject site is now within a Flood Risk Zone 1.

Source - https://flood-map-for-planning.service.gov.uk/

4.4. INDUSTRIAL LAND USES

There are no active entries within the trade directory for industrial land uses within 250 m. The closest active entry is Ideal Tyre Specialists located 676 m north east.

4.5. SENSITIVE LAND USES

The closest residential properties are located adjacent to eastern boundaries of the site. HM Wymott Prison is located adjacent to the south and HMP Garth is located to the west. Agricultural land is present on site and to the north and east.

4.6. SITE SENSITIVITY ASSESSMENT

The site is assessed to be located within a "Low to Moderate" sensitivity setting as discussed within Table 4.5.

TABLE 4.5 SITE SENSITIVITY ASSESSMENT

SENSITIVITY PROFILE	DISCUSSION	RATING
Groundwater Source Protection Zone or Drinking Water Safeguard Zone	The site is not located in a source protection zone.	LOW
Distance to the Closest Groundwater Abstraction Point	>1.0 km	LOW
Aquifer Classification in Superficial Drift Deposits	Secondary Undifferentiated aquifer Secondary A aquifer – there are no potable abstractions within 1.0 km.	LOW
Aquifer Classification in Bedrock	Secondary B aquifer	LOW
Is the Site Underlain by Low- Permeability Drift to Depths in Excess of 10 m?	The underlying superficial deposits are likely to comprise low-permeability clay soils to depths in excess of 5 m which may reduce the potential for mobile phase contaminants to migrate towards the bedrock aquifer or the surface water features.	LOW
Is the Site Located Within 50 m of a Surface Watercourse?	Two ponds and a drainage network are present on site.	MODERATE
Sensitive Land Uses	The closest residential properties are located adjacent to eastern boundaries of the site. HM Wymott Prison is located adjacent to the south and HMP Garth is located to the west. Agricultural land is present on site and to the north and east. The site lies in an area of adopted green belt and nitrate vulnerable zone.	HIGH
OVERALL SITE ENVIRONMEN	TAL SENSITIVITY	LOW/MODERATE

5. CONSULTATIONS

5.1. CONTAMINATED LAND OFFICER

E3P contacted the environmental health department at Lancashire Chorley Council who have been unable to respond within the reporting timescales. Upon receipt of the search information, E3P will issue any pertinent information and/or use the information to inform the development of any intrusive investigation proposals.

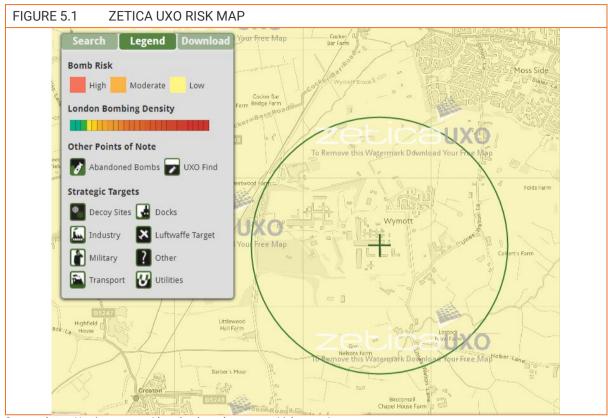
5.2. LANDFILL SITES AND WASTE TREATMENT SITES

There are no landfill sites within 250 m. The Envirocheck report lists potentially infilled ground relating to former water features on site. Historical mapping confirms the presence of infilled ponds on site.

5.3. REGULATORY DATABASE

The information summarised in Table 5.1 has been obtained from a commercially available environmental database. The summary table only includes records from within 250 m of the subject site and not otherwise detailed in the report.

TABLE 5.1 SUMMARY OF ENVIRONMENTAL DATA


RECORD	ENTRIES WITHIN 250 m	DETAILS
Contaminated Land Register Entries and Notices	0	None Identified
Authorised Industrial Processes (IPC/IPPC/LAPPC)	0	None Identified
Fuel Stations Entries	0	None Identified
Licensed Radioactive Substances	0	None Identified
Enforcements, Prohibitions or Prosecutions	0	None Identified
Discharge Consents	0	None Identified
Pollution Incidents	0	None Identified
Consents Issued Under the Planning (Hazardous Substances) Act 1990	0	None Identified
Control of Major Accident Hazard (COMAH) Sites	0	None Identified

5.1. UNEXPLODED ORDNANCE

The regional unexploded bomb risk map from Zetica (2014) indicates that the site is in an area at low risk from possible unexploded ordnance (UXO) resulting from the Second World War. The Zeticia UXO Risk Map is presented as Figure 5.1.

The Brimstone UXO Desk Study (report ref: PRA-20-1311 October 2020) states:

During WWII, the Site remained open fields, however one explosives storage house (ESH) was built on Site with associated rail tracks (representing a small portion of the wider dispersed depot site). Additional tracks leading to other ESHs crossed the Site also. The report recommends the completion of a Stage 2 Detailed Risk Assessment prior to commencing development.

Source - https://zeticauxo.com/downloads-and-resources/risk-maps/

6. INITIAL CONCEPTUAL SITE MODEL

In accordance with EA LCRM (2019) and BSI 10175 (Code of Practice for Investigation of Potentially Contaminated Land), E3P has developed an initial conceptual site model (CSM) to identify potential contamination sources, migration pathways and receptors within the study area. This is summarised within Table 6.1.

ON-SITE SOURCES OF CONTAMINATION

The following potential on-site sources of contamination have been identified:

TABLE 6.1 ON-SITE SOURCES OF CONTAMINATION

TABLE 0.1 UN-SITE SOURCES OF CONTAMINATION				
ON-SITE FEATURE	DATES	POTENTIAL CONTAMINATION		
Made Ground from former buildings/structures	Pre 1894-Present	Heavy metals and inorganic compounds, PAH's, hydrocarbon compounds, asbestos. Hazardous Ground Gas		
Infilled Ponds, Field Boundaries	Pre 1847-Pre 1990	Heavy metals and inorganic compounds, PAH's, hydrocarbon compounds, asbestos. Hazardous Ground Gas		
Tracks	Pre 1983-Pre 1990	Heavy metals, PAH's, hydrocarbon compounds, asbestos.		
Sewage Pumping Station	Pre 2020-Present	Organic compounds, pathogens.		
Boiler House	Pre 1990-Present	Heavy Metals and inorganic compounds, PAH's		
MOD storage	Pre 1983 – Pre 2001	Heavy metals, chlorinated and non-chlorinated solvents, PAH's, hydrocarbon compounds, asbestos.		

OFF-SITE SOURCES OF CONTAMINATION

The following potential off-site sources of contamination have been identified:

TABLE 6.2 OFF-SITE SOURCES OF CONTAMINATION

SURROUNDING FEATURE	DISTANCE FROM SITE AND DIRECTION	POTENTIAL CONTAMINATION
Infilled Ponds	30 m – 250 m North, East, South, West	Hazardous Ground Gas

Land adjacent to HMP Garth

Phase I & II Geoenvironmental Site Assessment August 2021

TABLE 6.3 INITIAL CONCEPTUAL SITE MODEL

SOURCE	PATHWAY	RECEPTOR
Human Health		
Heavy Metals, PAHs associated with Made Ground, Infilled Ponds and Field Boundaries, Boiler House, MOD Storage	Dermal Contact and Ingestion. Consumption of Homegrown Produce.	Construction Workers. Site End Users.

Discussion:

Made Ground, derived from the demolition of buildings and infilling of ponds and field boundaries is likely to be present in localised areas of the site. Made Ground is likely to be impacted by heavy metals, hydrocarbons and polycyclic aromatic hydrocarbons (PAH). The existing boiler house and the former MOD storage are a potential source for heavy metals and PAHs.

If present, heavy metals and non-volatile PAHs may pose a short-term risk to construction workers who may come into contact with impacted soils during earthworks.

The site is likely to be covered by the proposed structures or hard-standing; however, future site users may come into contact with impacted soils within any gardens or landscaped areas.

Volatile Hydrocarbon Compounds and
PAH associated with Made Ground,
Infilled Ponds and Field Boundaries,
Sewage Pumping Station, MOD Storage

Volatilisation/Accumulation.
Vapour Inhalation.

Construction Workers. Site End Users.

Discussion:

Made Ground across the site resulting from demolition activities and infilling may be potential sources of hydrocarbon compounds and volatile PAHs, such as naphthalene.

Historical site uses including the MOD storage may be a source of volatile contaminants such as PAH's, TPH's and other solvents and agents used on site. There is potential for spillages and leakages to have occurred overtime and the presence of railway tracks also increases the risk of diesel spillages.

Hydrocarbon compounds, solvents and PAHs may pose a risk to construction workers if they come into contact with impacted soils during further earthworks, however appropriate PPE/ Respiratory Protective Equipment (RPE) will ensure they are at no unacceptable risk. Future end users may come into contact with impacted soils in garden and landscaped areas, though the main pathway of volatile compounds is considered to be vapour inhalation indoors. If identified, it is likely that additional remediation of impacted soils and/or perched groundwater will be required to mitigate the risk to future residential end users.

Asbestos-Containing Materials (ACMs) within Made Ground	Fibre/Dust Inhalation.	Construction Workers. Site End Users. Third-Party Property.
---	------------------------	---

Discussion:

A pre-demolition asbestos survey will be required with any asbestos materials removed from the buildings prior to demolition. Asbestos may be present in the Made Ground associated with historic infilling and demolition activities.

ACM poses a risk through fibre and dust inhalation and if present may pose a risk to construction workers during any future earthworks / demolition and to adjacent third party property should dust be generated during those works.

Hazardous Ground Gases		
Methane and Carbon Dioxide Associated with Made Ground, Infilled ponds, Sewage Pumping Station	Inhalation. Accumulation.	Construction Workers. Site End Users.

Land adjacent to HMP Garth

Phase I & II Geoenvironmental Site Assessment August 2021

SOURCE PATHWAY RECEPTOR

Discussion:

Made Ground, possible localised sludges associated with the sewage pumping station and organic deposits in infilled ponds may be sources of hazardous ground gases such as carbon dioxide and methane which have associated asphyxiation and explosive risks. The infilled ponds within 250 m may also be a potential source of hazardous ground gas, however due to the distance from site this is considered to represent a very low risk.

Controlled Waters

Mobile Contaminants	Vertical/Lateral Migration.	Secondary A Aquifer. Secondary B Aquifer. On-Site Drainage Network and Pond
---------------------	-----------------------------	--

Discussion:

Impacted Made Ground represents a potential source of mobile contamination.

Potential granular drift deposits beneath the site may facilitate the migration of mobile contamination, if present, to the on-site pond and drainage network and underlying Secondary A aquifer and Secondary B aquifer.

The risk of downward migration is reduced considering there are no potable groundwater abstractions within 1.0 km.

Intrusive investigation with chemical analysis of soil and groundwater samples is recommended to assess the presence of mobile contaminants and facilitate further risk assessment.

Buildings and Infrastructure

pH and Sulphate	Corrosion of Concrete.	Foundations/Concrete.
-----------------	------------------------	-----------------------

Discussion:

Presence of pH and sulphate within Made Ground deposits may result in corrosion of buried concrete within the proposed development. Assessment must be undertaken to confirm the levels of pH and sulphate within the underlying strata and in particular any Made Ground deposits so that a concrete classification can be determine.

Ecology

Mobile Contaminants	Lateral Migration.	On-Site Drainage Network and Pond
---------------------	--------------------	-----------------------------------

Discussion:

Mature and semi-mature trees are located on site which may provide habitats for protected wildlife (nesting birds or roosting bats). A habit survey will be required to support a planning application.

In the likely absence of any significant sources of mobile contaminants, the risk to ecology and aquatic ecosystems is considered to be low.

7. GROUND INVESTIGATION

7.1. GENERAL OVERVIEW

A ground investigation has been designed based on the findings of the desk study, with exploratory holes advanced to target specific potential contaminant sources summarised in Table 6.1. The investigation has also been used to collect geotechnical information to assist in the design and construction of the proposed development.

Exploratory fieldwork was completed between 29th October 2020 and 4th November 2020. The works are summarised in Table 7.1 overleaf.

7.2. LIMITATIONS OF THE INVESTIGATION

Investigation could not be completed in the location of the existing buildings.

7.3. SCOPE OF INVESTIGATION

TABLE 7.1 SUMMARY OF FIELDWORK

POTENTIAL SOURCE/RATIONALE	LOCATION HOLE	TYPE	MAXIMUM DEPTH (m bgl)	MONITORING WELLS RESPONSE ZONE (m bgl)
Boiler House	WS101		3.45	N/A
	WS102		4.45	0.5-4.0
	WS103		5.45	N/A
	WS104		5.45	N/A
	WS105		4.45	N/A
	WS106		4.45	N/A
	WS107		4.45	N/A
	WS108		4.45	0.5-4.0
General Ground Conditions -	WS109		4.45	0.5-4.0
Agricultural Land	WS110	Window Sample Probehole	4.45	N/A
	WS111		4.45	N/A
	WS112		4.45	0.5-4.0
	WS113		4.45	N/A
	WS114		4.45	N/A
	WS115		3.45	N/A
	WS116		4.45	N/A
	WS117		3.45	N/A
	WS118		4.45	N/A
	WS119		4.45	0.5-4.0
	WS120		4.45	N/A
General Ground Conditions –	WS121		4.45	N/A
Exercise Land	WS122		4.45	N/A
	WS123		4.45	1.0-4.0
	WS124		4.45	N/A
	WS125		4.45	N/A

Window sample probeholes were advanced to undertake in-situ detailed geotechnical testing, obtain environmental samples and install groundwater and ground gas monitoring wells. The majority of window sample probeholes were only drilled to 4.45 m bgl due to time constraints.

The sampling locations are illustrated in Drawing 14-451-005 (Appendix III). The ground conditions encountered are indicated on the logs, which are provided in Appendix V.

Return visits were made to monitor installations for groundwater level and gas concentrations. In addition, selected wells were purged and samples of groundwater recovered for chemical analysis.

7.4. IN-SITU STANDARD PENETRATION TESTING (SPT)

In-situ geotechnical testing was conducted using the standard penetration test (SPT) and, where the ground is granular, a 60° cone (SPT(C)) was used instead of the sampling tube. The results are shown in the probehole logs in Appendix V and presented in Table 8.5 and discussed in Section 10.

7.5. LABORATORY ANALYSIS

Selected soil samples	word cubmitted for	a range of chamica	Lanalycic comprising:
Selected Soll Samples	were submitted for	a range or chemica	i alialysis comprising.

- Metals.
- pH, total sulphate, water-soluble sulphate (2:1 extract).
- Sulphide.
- Cyanide.
- Phenols.
- Total and speciated polycyclic aromatic hydrocarbons (PAHs).
- Semi Volatile Organic Compounds (SVOC).
- Volatile Organic Compounds (VOC).
- Total Organic Carbon (TOC).
- Asbestos identification and quantification.
- Banded total petroleum hydrocarbon (TPH).

I2 Analytical undertook the analytical work and the testing results are included in Appendix VI and discussed in Section 9.

Selected samples were submitted to PSL Laboratory where the following geotechnical tests were undertaken:

- Atterberg limits determinations;
- Moisture content;
- Compaction tests;
- Particle size distribution;
- Consolidation tests; and
- Single-stage triaxial tests.

Laboratory analysis sheets are included in Appendix VIII and are summarised in Section 8.

8. GROUND AND GROUNDWATER CONDITIONS

8.1. SUMMARY OF GROUND CONDITIONS

The ground investigation generally confirms the published geology and identifies the strata set out in Table 8.1.

TABLE 8.1 SUMMARY OF STRATA

TABLE 6.	DEPTH TO STRATUM (m bgl)											
HOLE	MADE GROUND TOPSOIL	MADE GROUND	TOPSOIL	FIRM CLAY	STIFF / VERY STIFF CLAY	SAND	GRAVEL	SILT				
WS101	0.00-1.50	1.50-3.45	-	-	-	-	-	-				
WS102	0.00-0.16	0.16-0.60	_	-	0.60-4.45	_	_	_				
WS103	0.00-0.20	0.20-0.50	_	0.50-1.00 2.00-3.00	3.00-5.45	_	1.00-2.00	-				
WS104	_	_	0.00-0.32	0.32-2.5	2.50-5.45	_	_	_				
WS105	0.00-0.42	0.42-1.00	_	1.00-2.00	2.00-2.45 2.55-4.45	_	_	2.45-2.55				
WS106	0.00-0.22 0.40-0.60	0.22-0.40 0.60-1.50	_	1.50-3.00	3.00-4.45	_	_	-				
WS107	0.00-0.60	_	_	_	0.60-4.45	_		_				
WS108	-	_	0.00-0.30	0.30-2.00	2.00-4.45	-	_	-				
WS109	0.00-0.50	0.50-0.80	-	-	1.00-4.45	-	-	_				
WS110	0.00-0.50	0.50-0.60	_	_	0.60-4.45	_	_	_				
WS111	0.00-0.50	_	_	_	0.50-0.70 1.00-4.45	0.70-1.00	_	-				
WS112	0.00-0.30	_	_	_	0.30-4.45	_	_	_				
WS113	-	_	0.00-0.30	0.30-1.00	1.20-4.45	1.00-1.20	_	_				
WS114	_	-	0.00-0.23	-	0.23-4.45	-	-	_				
WS115	_	-	0.00-0.30	-	2.00-3.45	0.30-2.00	-	_				
WS116	_	-	0.00-0.28	-	0.75-4.45	0.28-0.70	0.70-0.75	_				
WS117	0.00-0.30	0.30-1.00	-	-	1.00-3.45	-		_				
WS118	0.00-0.40	0.40-1.50	-	-	1.50-4.45	-	-	_				
WS119	0.00-0.30	-	_	-	0.30-4.45	_	-	_				
WS120	_	-	0.00-0.25	-	0.25-4.45	-	-	_				
WS121	_	_	0.00-0.25	-	0.25-3.40	3.40-4.45	_	_				
WS122	0.10-0.30	0.00-0.10	-	0.30-0.60	0.60-4.45	-		_				
WS123	0.00-0.15	0.15-0.30	_	-	0.30-4.45	_	_	_				
WS124	_	0.00-0.35	_	0.35-2.0	2.00-4.45	_	_	_				
WS125	0.00-0.05	0.05-1.20	_	_	1.20-4.45	_	_	-				

August 2021

8.2. MADE GROUND

Made Ground deposits were encountered within the majority of exploratory hole locations to depths of between 0.20 m and in excess of 3.45 m bgl (WS101) although, in general, Made Ground was encountered to a depth of less than 1.50 m bgl.

Made Ground deposits generally comprise a reworked topsoil of dark brown silty clayey fine to medium sand with sandstone, ceramic and brick. Beneath the reworked topsoil, Made Ground comprises dark brown gravelly fine to coarse sand and soft to firm gravelly clay with mudstone, brick and concrete.

A hydrocarbon odour was noted in WS106 between 0.80 m to 1.00 m bgl. A relict topsoil layer was identified between 0.40 m and 0.60 m bgl and organic matter was also noted in WS106 between 0.80 m to 1.50 m bgl.

A strong organic odour was noted in the reworked clay in WS118 between 0.60 m and 1.50 m bgl.

WS101 adjacent to the existing boiler house refused on a possible obstruction at 3.45 m bgl.

A Depth of Made Ground Plan is presented as Drawing 14-451-006 in Appendix III.

8.3. TOPSOIL

Natural topsoil was encountered in localised areas as dark brown slightly clayey fine to medium SAND with rootlets in the northern sector and as soft to firm dark brown to black CLAY in the south east sector. Topsoil depths ranged from between 0.23 m to 0.32 m bgl.

8.4. DRIFT DEPOSITS

Drift deposits were encountered in all exploratory locations, with the exception of WS101 where the full depth of Made Ground could not be proven. The drift deposits were encountered to depths in excess of 5.45 m bgl.

The drift deposits are fairly consistent, generally comprising firm medium strength to very stiff very high strength greyish brown gravelly CLAY with mudstone.

Localised lenses of granular drift deposits were encountered, generally comprising medium dense greyish brown clayey silty gravelly fine to medium SAND with mudstone. Loose GRAVEL was identified in WS103 between 1.00 m to 2.00 m bgl.

8.5. SOLID GEOLOGY

The solid bedrock geology was not encountered during the ground investigation. BGS boreholes in the vicinity of the site suggest that the drift deposits are present to depths in excess of 15.00 m bgl.

8.6. GROUNDWATER

Groundwater strikes were encountered as seepages. The depth of the seepages are shown on the exploratory hole records in Appendix V and are summarised in Table 8.2.

TABLE 8.2 SUMMARY GROUNDWATER STRIKES

LOCATION	DEPTH TO STRIKE (m)	NOTES
WS101	2.00	
WS105	1.00	
WS106	1.50	
WS110	1.50	_
WS117	1.00	Coopera
WS118	1.00	Seepage
WS119	3.00	
WS121	3.00	
WS122	3.00	
WS124	3.50	

8.7. VISUAL AND OLFACTORY EVIDENCE OF CONTAMINATION

Visual and olfactory evidence of potential contamination has been identified during the site investigation and these are summarised in Table 8.3.

TABLE 8.3 SUMMARY VISUAL AND OLFACTORY EVIDENCE OF CONTAMINATION

LOCATION	DEPTH (m)	STRATUM	NOTES
WS106	1.0-1.5	Made Ground	Hydrocarbon odour
WS118	0.6-1.5	Made Ground	Strong organic odour

8.8. SOIL CONSISTENCY

Undrained shear strength values were measured using laboratory undrained triaxial tests. Results of the tests are presented in Table 8.4, which indicate the clay soils to vary between soft and very stiff. Strength test data is generally consistent with the field descriptions of the aforementioned soils.

Results of the standard penetration tests, including undrained shear strengths derived from SPTs are included in Table 8.5.

TABLE 8.4 SUMMARY OF UNDRAINED SHEAR STRENGTH TEST RESULTS

TABLE 8.4	SUMMART OF	UNDRAINED SHEAR STRENGTH	I EST RESULTS	
LOCATION	SAMPLE DEPTH (m)	LAB DESCRIPTION	UNDRAINED SHEAR STRENGTH (kN/m²)	CONSISTENCY
WS103	2.5-3.0	Stiff, brown, slightly gravelly, sandy CLAY.	83	Stiff
WS106	2.5-3.0	Firm brown slightly gravelly sandy CLAY.	59	Firm
WS108	0.5-1.0	Firm brown slightly gravelly sandy CLAY.	62	Firm
WS111	1.5-2.0	Very stiff brown slightly gravelly sandy CLAY.	158	Very Stiff
WS112	1.5-2.0	Very stiff brown slightly gravelly sandy CLAY.	183	Very Stiff
WS115	1.5-2.0	Firm brown slightly gravelly sandy CLAY.	61	Firm
WS117	1.5-2.0	Firm brown slightly gravelly sandy CLAY.	68	Firm
WS118	1.5-2.0	Soft brown gravelly sandy CLAY.	21	Soft
WS120	2.5-3.0	Firm brown slightly gravelly sandy CLAY.	73	Firm
WS121	0.5-1.0	Stiff brown slightly gravelly sandy CLAY.	96	Stiff
WS123	2.5-3.0	Very stiff brown slightly gravelly sandy CLAY.	180	Very Stiff

TABLE 8.5 STANDARD/CONE PENETRATION TEST RESULTS

TABLE 0.5	017(1107	IND/OUNL! LINETINA	11011 1201	TEOOLIO					
BOREHOLES	DEPTH (m bgl)	MATERIAL FIELD DESCRIPTION	CPT/SPT "N" VALUE	CORRECTED "N" VALUE (N ₁) ₆₀	TERZAGHI & PECK RELATIVE DENSITY (SANDS)	EUROCODE SOIL STRENGTH	CONSISTENCY (BS 5930)	TERZAGHI & PECK APPROXIMATE UNDRAINED SHEAR STRENGTH (kN/m²)	ALLOWABLE BEARING PRESSURE (kN/m²)*
WS101	2.0	MADE GROUND: Gravelly clay	18	16.44	N/A	High strength	Very Stiff	82.22	169.04
WS101	3.0	MADE GROUND: Gravelly clay	50	43.48	N/A	Very high strength	Very Stiff	217.41	447.00
WS102	1.0	Gravelly CLAY	8	8.07	N/A	Medium strength	Stiff	40.33	82.91
WS102	2.0	Gravelly CLAY	15	13.70	N/A	Medium strength	Stiff	68.52	140.87
WS102	3.0	Gravelly CLAY	26	22.61	N/A	High strength	Very Stiff	113.05	232.44
WS102	4.0	Gravelly CLAY	50	42.24	N/A	Very high strength	Very Stiff	211.21	434.25
WS103	1.0	Clayey GRAVEL	8	8.07	Loose	N/A	N/A	N/A	80.65
WS103	2.0	CLAY	6	5.48	N/A	Low strength	Firm	27.41	56.35
WS103	3.0	Gravelly CLAY	14	12.18	N/A	Medium strength	Stiff	60.88	125.16
WS103	4.0	CLAY	24	20.28	N/A	High strength	Very Stiff	101.38	208.44
WS103	5.0	CLAY	24	19.91	N/A	High strength	Very Stiff	99.55	204.68
WS104	1.0	Gravelly CLAY	6	6.05	N/A	Low strength	Firm	30.24	62.18
WS104	2.0	Gravelly CLAY	8	7.31	N/A	Low strength	Firm	36.54	75.13

BOREHOLES	DEPTH (m bgl)	MATERIAL FIELD DESCRIPTION	CPT/SPT "N" VALUE	CORRECTED "N" VALUE (N ₁) ₆₀	TERZAGHI & PECK RELATIVE DENSITY (SANDS)	EUROCODE SOIL STRENGTH	CONSISTENCY (BS 5930)	TERZAGHI & PECK APPROXIMATE UNDRAINED SHEAR STRENGTH (kN/m²)	ALLOWABLE BEARING PRESSURE (kN/m²)*
WS104	3.0	CLAY	12	10.44	N/A	Medium strength	Stiff	52.18	107.28
WS104	4.0	CLAY	19	16.05	N/A	High strength	Very Stiff	80.26	165.02
WS104	5.0	CLAY	26	21.57	N/A	High strength	Very Stiff	107.85	221.74
WS105	1.0	Gravelly CLAY	5	5.04	N/A	Low strength	Firm	25.20	51.82
WS105	2.0	CLAY	9	8.22	N/A	Medium strength	Stiff	41.11	84.52
WS105	3.0	CLAY	16	13.91	N/A	Medium strength	Stiff	69.57	143.04
WS105	4.0	CLAY	20	16.90	N/A	High strength	Very Stiff	84.49	173.70
WS106	1.0	MADE GROUND: Gravelly clay	3	3.02	N/A	Very low strength	Soft	15.12	31.09
WS106	2.0	Sandy CLAY	7	6.39	N/A	Low strength	Firm	31.97	65.74
WS106	3.0	Sandy CLAY	11	9.57	N/A	Medium strength	Stiff	47.83	98.34
WS106	4.0	Sandy CLAY	18	15.21	N/A	High strength	Very Stiff	76.04	156.33
WS107	1.0	CLAY	8	8.07	N/A	Medium strength	Stiff	40.33	82.91
WS107	2.0	CLAY	11	10.05	N/A	Medium strength	Stiff	50.24	103.30
WS107	3.0	CLAY	24	20.87	N/A	High strength	Very Stiff	104.36	214.56

BOREHOLES	DEPTH (m bgl)	MATERIAL FIELD DESCRIPTION	CPT/SPT "N" VALUE	CORRECTED "N" VALUE (N ₁) ₆₀	TERZAGHI & PECK RELATIVE DENSITY (SANDS)	EUROCODE SOIL STRENGTH	CONSISTENCY (BS 5930)	TERZAGHI & PECK APPROXIMATE UNDRAINED SHEAR STRENGTH (kN/m²)	ALLOWABLE BEARING PRESSURE (kN/m²)*
WS107	4.0	CLAY	27	22.81	N/A	High strength	Very Stiff	114.05	234.50
WS108	1.0	Gravelly CLAY	7	7.06	N/A	Low strength	Firm	35.29	72.55
WS108	2.0	Gravelly CLAY	14	12.79	N/A	Medium strength	Stiff	63.95	131.48
WS108	3.0	Gravelly CLAY	29	25.22	N/A	High strength	Very Stiff	126.10	259.26
WS108	4.0	Gravelly CLAY	34	28.72	N/A	High strength	Very Stiff	143.62	295.29
WS109	1.0	CLAY	11	11.09	N/A	Medium strength	Stiff	55.45	114.00
WS109	2.0	Gravelly CLAY	16	14.62	N/A	Medium strength	Stiff	73.08	150.26
WS109	3.0	Gravelly CLAY	22	19.13	N/A	High strength	Very Stiff	95.66	196.68
WS109	4.0	Gravelly CLAY	19	16.05	N/A	High strength	Very Stiff	80.26	165.02
WS110	1.0	Gravelly CLAY	13	13.11	N/A	Medium strength	Stiff	65.53	134.73
WS110	2.0	Gravelly CLAY	13	11.88	N/A	Medium strength	Stiff	59.38	122.09
WS110	3.0	Gravelly CLAY	22	19.13	N/A	High strength	Very Stiff	95.66	196.68
WS110	4.0	Gravelly CLAY	21	17.74	N/A	High strength	Very Stiff	88.71	182.39
WS111	1.0	CLAY	12	12.10	N/A	Medium strength	Stiff	60.49	124.37

BOREHOLES	DEPTH (m bgl)	MATERIAL FIELD DESCRIPTION	CPT/SPT "N" VALUE	CORRECTED "N" VALUE (N ₁) ₆₀	TERZAGHI & PECK RELATIVE DENSITY (SANDS)	EUROCODE SOIL STRENGTH	CONSISTENCY (BS 5930)	TERZAGHI & PECK APPROXIMATE UNDRAINED SHEAR STRENGTH (kN/m²)	ALLOWABLE BEARING PRESSURE (kN/m²)*
WS111	2.0	CLAY	13	11.88	N/A	Medium strength	Stiff	59.38	122.09
WS111	3.0	CLAY	25	21.74	N/A	High strength	Very Stiff	108.71	223.50
WS111	4.0	CLAY	25	21.12	N/A	High strength	Very Stiff	105.61	217.13
WS112	1.0	CLAY	8	8.07	N/A	Medium strength	Stiff	40.33	82.91
WS112	2.0	CLAY	12	10.96	N/A	Medium strength	Stiff	54.81	112.69
WS112	3.0	CLAY	17	14.78	N/A	Medium strength	Stiff	73.92	151.98
WS112	4.0	CLAY	20	16.90	N/A	High strength	Very Stiff	84.49	173.70
WS113	1.0	Gravelly CLAY	9	9.07	N/A	Medium strength	Stiff	45.37	93.27
WS113	2.0	Gravelly CLAY	8	7.31	N/A	Low strength	Firm	36.54	75.13
WS113	3.0	Gravelly CLAY	23	20.00	N/A	High strength	Very Stiff	100.01	205.62
WS113	4.0	Gravelly CLAY	22	18.59	N/A	High strength	Very Stiff	92.93	191.07
WS114	1.0	CLAY	9	9.07	N/A	Medium strength	Stiff	45.37	93.27
WS114	2.0	Gravelly CLAY	18	16.44	N/A	High strength	Very Stiff	82.22	169.04
WS114	3.0	CLAY	23	20.00	N/A	High strength	Very Stiff	100.01	205.62
WS114	4.0	CLAY	25	21.12	N/A	High strength	Very Stiff	105.61	217.13

BOREHOLES	DEPTH (m bgl)	MATERIAL FIELD DESCRIPTION	CPT/SPT "N" VALUE	CORRECTED "N" VALUE (N ₁) ₆₀	TERZAGHI & PECK RELATIVE DENSITY (SANDS)	EUROCODE SOIL STRENGTH	CONSISTENCY (BS 5930)	TERZAGHI & PECK APPROXIMATE UNDRAINED SHEAR STRENGTH (kN/m²)	ALLOWABLE BEARING PRESSURE (kN/m²)*
WS115	1.0	Clayey SAND	12	12.10	Medium Dense	N/A	N/A	N/A	120.98
WS115	2.0	Gravelly CLAY.	24	21.92	N/A	High strength	Very Stiff	109.62	225.39
WS115	3.0	Gravelly CLAY.	50	43.48	N/A	Very high strength	Very Stiff	217.41	447.00
WS116	1.0	Gravelly CLAY.	8	8.07	N/A	Medium strength	Stiff	40.33	82.91
WS116	2.0	Gravelly CLAY.	15	13.70	N/A	Medium strength	Stiff	68.52	140.87
WS116	3.0	CLAY.	19	16.52	N/A	High strength	Very Stiff	82.62	169.86
WS116	4.0	CLAY.	26	21.97	N/A	High strength	Very Stiff	109.83	225.81
WS117	1.0	Gravelly CLAY.	9	9.07	N/A	Medium strength	Stiff	45.37	93.27
WS117	2.0	Gravelly CLAY.	26	23.75	N/A	High strength	Very Stiff	118.76	244.17
WS117	3.0	Gravelly CLAY.	50	43.48	N/A	Very high strength	Very Stiff	217.41	447.00
WS118	1.0	Gravelly CLAY	4	4.03	N/A	Low strength	Firm	20.16	41.46
WS118	2.0	Gravelly CLAY	10	9.14	N/A	Medium strength	Stiff	45.68	93.91
WS118	3.0	Gravelly CLAY	16	13.91	N/A	Medium strength	Stiff	69.57	143.04

BOREHOLES	DEPTH (m bgl)	MATERIAL FIELD DESCRIPTION	CPT/SPT "N" VALUE	CORRECTED "N" VALUE (N ₁) ₆₀	TERZAGHI & PECK RELATIVE DENSITY (SANDS)	EUROCODE SOIL STRENGTH	CONSISTENCY (BS 5930)	TERZAGHI & PECK APPROXIMATE UNDRAINED SHEAR STRENGTH (kN/m²)	ALLOWABLE BEARING PRESSURE (kN/m²)*
WS118	4.0	Gravelly CLAY	22	18.59	N/A	High strength	Very Stiff	92.93	191.07
WS119	1.0	Gravelly CLAY	8	8.07	N/A	Medium strength	Stiff	40.33	82.91
WS119	2.0	Gravelly CLAY	10	9.14	N/A	Medium strength	Stiff	45.68	93.91
WS119	3.0	Gravelly CLAY	14	12.18	N/A	Medium strength	Stiff	60.88	125.16
WS119	4.0	Gravelly CLAY	20	16.90	N/A	High strength	Very Stiff	84.49	173.70
WS120	1.0	Gravelly CLAY	9	9.07	N/A	Medium strength	Stiff	45.37	93.27
WS120	2.0	Gravelly CLAY	14	12.79	N/A	Medium strength	Stiff	63.95	131.48
WS120	3.0	Gravelly CLAY	18	15.65	N/A	High strength	Very Stiff	78.27	160.92
WS120	4.0	Gravelly CLAY	18	15.21	N/A	High strength	Very Stiff	76.04	156.33
WS121	1.0	Gravelly CLAY	10	10.08	N/A	Medium strength	Stiff	50.41	103.64
WS121	2.0	Gravelly CLAY	15	13.70	N/A	Medium strength	Stiff	68.52	140.87
WS121	3.0	Gravelly CLAY	18	15.65	N/A	High strength	Very Stiff	78.27	160.92
WS121	4.0	SAND	13	10.98	Medium Dense	N/A	N/A	N/A	109.83

BOREHOLES	DEPTH (m bgl)	MATERIAL FIELD DESCRIPTION	CPT/SPT "N" VALUE	CORRECTED "N" VALUE (N ₁) ₆₀	TERZAGHI & PECK RELATIVE DENSITY (SANDS)	EUROCODE SOIL STRENGTH	CONSISTENCY (BS 5930)	TERZAGHI & PECK APPROXIMATE UNDRAINED SHEAR STRENGTH (kN/m²)	ALLOWABLE BEARING PRESSURE (kN/m²)*
WS122	1.0	Gravelly CLAY	11	11.09	N/A	Medium strength	Stiff	55.45	114.00
WS122	2.0	Gravelly CLAY	12	10.96	N/A	Medium strength	Stiff	54.81	112.69
WS122	3.0	Gravelly CLAY	12	10.44	N/A	Medium strength	Stiff	52.18	107.28
WS122	4.0	Gravelly CLAY	19	16.05	N/A	High strength	Very Stiff	80.26	165.02
WS123	1.0	Gravelly CLAY	8	8.07	N/A	Medium strength	Stiff	40.33	82.91
WS123	2.0	Gravelly CLAY	12	10.96	N/A	Medium strength	Stiff	54.81	112.69
WS123	3.0	Gravelly CLAY	21	18.26	N/A	High strength	Very Stiff	91.31	187.74
WS123	4.0	Gravelly CLAY	18	15.21	N/A	High strength	Very Stiff	76.04	156.33
WS124	1.0	Gravelly CLAY	7	7.06	N/A	Low strength	Firm	35.29	72.55
WS124	2.0	Gravelly CLAY	11	10.05	N/A	Medium strength	Stiff	50.24	103.30
WS124	3.0	Gravelly CLAY	14	12.18	N/A	Medium strength	Stiff	60.88	125.16
WS124	4.0	Gravelly CLAY	22	18.59	N/A	High strength	Very Stiff	92.93	191.07
WS125	1.0	Gravelly CLAY	9	9.07	N/A	Medium strength	Stiff	45.37	93.27

BOREHOLES	DEPTH (m bgl)	MATERIAL FIELD DESCRIPTION	CPT/SPT "N" VALUE	CORRECTED "N" VALUE (N ₁) ₆₀	TERZAGHI & PECK RELATIVE DENSITY (SANDS)	EUROCODE SOIL STRENGTH	CONSISTENCY (BS 5930)	TERZAGHI & PECK APPROXIMATE UNDRAINED SHEAR STRENGTH (kN/m²)	ALLOWABLE BEARING PRESSURE (kN/m²)*
WS125	2.0	Gravelly CLAY	11	10.05	N/A	Medium strength	Stiff	50.24	103.30
WS125	3.0	Gravelly CLAY	23	20.00	N/A	High strength	Very Stiff	100.01	205.62
WS125	4.0	Gravelly CLAY	26	21.97	N/A	High strength	Very Stiff	109.83	225.81

NOTES

The interpretation of in situ mass undrained shear strength (cu) data from SPT Blow Count (N) results and the influence of the Plasticity Index (PI) was reported in Standard Penetration Test in Insensitive Clays and Soft Rocks. Stroud (1974). The standard penetration test and the engineering properties of glacial materials subsequently. Stroud and Butler (1975) and (1989).

Allowable bearing pressure on sands. Soil Mechanics in Engineering Practice Terzaghi, K. & Peck, R.B. 1996.

^{*} The Allowable Bearing Pressure (ABP) should be considered indicative.

8.9. CONSOLIDATION

Nine undisturbed samples of Glacial Till were submitted for oedometer analysis. The results are provided in Table 8.6.

TABLE 8.6 OEDOMETER CONSOLIDATION RESULTS

	DEDTII CAMDIE		MOISTURE	OEDON	METER CONSOLIDA	ATION
LOCATION	DEPTH (m)	SAMPLE TYPE	CONTENT (%)	PRESSURE RANGE (kPa)	Mv (m²/MN)	Cv (m²/year)
				0-35	1.472	1.194
				35-70	0.590	1.821
WS101	1.5-2.0	U100	37	70-140	0.393	2.507
				140-280	0.242	2.440
				280-35	0.103	4.713
				0-55	0.464	0.526
				55-110	0.285	0.508
WS106	2.5-3.0	U100	21	110-220	0.182	0.523
				220-440	0.107	0.736
				440-55	0.038	0.905
				0-15	0.394	18.798
				15-30	0.603	7.653
WS108	0.5-1.0	U100	20	30-60	0.387	8.379
				60-120	0.204	4.843
				120-15	0.084	9.026
				0-35	0.148	38.208
				35-70	0.200	13.904
WS111	1.5-2.0	U100	20	70-140	0.170	12.334
				140-280	0.115	7.270
				280-35	0.059	43.134
				0-35	0.264	39.497
				35-70	0.246	18.115
WS112	1.5-2.0	U100	20	70-140	0.175	8.549
				140-280	0.108	3.218
				280-35	0.056	3.886
				0-35	0.154	9.925
				35-70	0.209	3.291
WS115	1.5-2.0	U100	26	70-140	0.173	2.778
				140-280	0.120	2.688
				280-35	0.049	2.955

	DEPTH	SAMPLE	MOISTURE	OEDOM	IETER CONSOLIDA	ATION
LOCATION	(m)	TYPE	CONTENT (%)	PRESSURE RANGE (kPa)	Mv (m2/MN)	Cv (m2/year)
				0-35	0.300	5.562
				35-70	0.359	6.906
WS117	1.5-2.0	U100	21	70-140	0.216	4.532
				140-280	0.135	4.145
			280-35	0.066	7.053	
				0-55	0.116	22.116
		U100	20	55-110	0.167	4.688
WS120	2.5-3.0			110-220	0.128	4.192
				220-440	0.095	3.958
				440-55	0.036	3.078
				0-55	0.286	26.755
				55-110	0.238	18.592
WS123	2.5-3.0	U100	26	110-220	0.109	2.325
				220-440	0.067	1.801
				440-55	0.030	2.376

When considered at over-burden pressure with an additional load of 110 kPa the coefficient of volume compressibility (Mv) ranged from $0.084~\text{m}^2/\text{MN}$ up to $0.393~\text{m}^2/\text{MN}$. The material is considered to be low to high compressibility.

8.10. PARTICLE SIZE DISTRIBUTION

Particle Size Distribution Tests have been undertaken on selected samples of granular material via wet sieve to obtain information on the soil fractions. The results are included in Table 8.7. The full results can be found in Appendix VIII.

TABLE 8.7 SUMMARY OF PARTICLE SIZE DISTRIBUTION TEST RESULTS

LOCATION	DEPTH	SOIL FRACTION (%)							
	(m)	COBBLES	GRAVEL	SAND	SILT/CLAY				
WS102	0.5-1.0 (Natural)	0	3	28	69				
WS108	0.5-1.0 (Natural)	0	3	15	82				
WS114	0.5-1.0 (Natural)	0	4	15	81				
WS117	0.5-2.0 (Made Ground/Natural)	0	3	16	81				
WS125	1.5-2.0 (Natural)	0	5	15	80				

8.11. SOIL DENSITY/MOISTURE CONTENT RELATIONSHIP

Dry density / moisture content relationship analysis has been conducted on soils using via utilising proctor compaction tests utilising both a 2.5kg rammer. The results of the tests have been summarised in Table 8.8. The full test results can be found in Appendix VIII.

TABLE 8.8 SUMMARY DRY DENSITY AND MOISTURE CONTENT

LOCATION	LABORATORY DESCRIPTION	тор DЕРТН (m)	METHOD OF COMPACTION	INITIAL MOISTURE CONTENT (%)	OPTIMUM MOISTURE CONTENT (%)	MATERIAL RETAINED ON 37.5 mm SIEVE (%)	MAX DRY DENSITY (mg/m³)	MATERIAL RETAINED ON 20.0 mm TEST SIEVE (%)
WS102	Made Ground: brown slightly gravelly very sandy clay.	0.5	2.5kg	26	10	0	1.63	0
WS108	Firm brown slightly gravelly sandy CLAY.	0.5	2.5kg	21	18	0	1.74	0
WS114	Brown slightly gravelly sandy CLAY.	0.5	2.5kg	23	20	0	1.69	0
WS117	Firm brown slightly gravelly sandy CLAY.	1.5	2.5kg	20	17	0	1.80	0
WS125	Brown slightly gravelly sandy CLAY.	1.5	2.5kg	20	17	0	1.76	0

The proctor compaction tests have indicated that the materials on site are variable with the material being wet of the optimum. It should be noted that if this material is excavated for use in a cut/fill operation careful consideration should be taken in the stabilisation of this material.

Engineering of this type of material will need to be completed during dry weather periods only.

8.12. SOIL PLASTICITY

The Atterberg limits determinations, summarised in Table 8.9, show the clay to be of low to moderate plasticity.

TABLE 8.9 SUMMARY OF PLASTICITY INDEX TEST RESULTS

LOCATION	DEPTH (m)	NATURAL MOISTURE CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	PASSING 425 µm SIEVE (%)	MODIFIED PLASTICITY INDEX	NHBC VOLUME CHANGE POTENTIAL
WS101	1.00- 1.45	33	25	50	25	93	23.25	Medium
WS101	2.00- 2.45	23	21	42	21	94	19.74	Low
WS102	2.00- 2.45	21	20	40	20	92	18.40	Low
WS103	1.00- 1.45	38	21	45	24	97	23.28	Medium
WS103	2.00- 2.45	24	22	47	25	94	23.50	Medium
WS105	2.00- 2.45	22	19	37	18	94	16.92	Low
WS106	1.00- 1.45	28	26	55	29	93	26.97	Medium
WS107	1.00- 1.45	20	21	41	20	98	19.60	Low
WS108	2.00- 2.45	18	20	40	20	91	18.20	Low
WS109	1.00- 1.45	28	21	40	19	97	18.43	Low
WS110	1.00- 1.45	20	20	42	22	97	21.34	Medium
WS111	1.00- 1.45	23	21	43	22	92	20.24	Medium
WS112	2.00- 2.45	18	19	38	19	90	17.10	Low
WS114	1.00- 1.45	18	19	39	20	94	18.80	Low
WS115	2.00- 2.45	21	23	48	25	95	23.75	Medium
WS116	1.00- 1.45	17	19	40	21	94	19.74	Low
WS117	1.00- 1.45	17	18	37	19	92	17.48	Low
WS118	1.00- 1.45	48	31	66	35	83	29.05	Medium
WS118	2.00- 2.45	22	18	37	19	98	18.62	Low
WS119	1.00- 1.45	19	20	41	21	96	20.16	Medium

LOCATION	DEPTH (m)	NATURAL MOISTURE CONTENT (%)	PLASTIC LIMIT (%)	(%)	PLASTICITY INDEX (%)	PASSING 425 µm SIEVE (%)	MODIFIED PLASTICITY INDEX	NHBC VOLUME CHANGE POTENTIAL
WS120	2.00- 2.45	18	19	39	20	92	18.40	Low
WS121	1.00- 1.45	18	21	43	22	91	20.02	Medium
WS121	2.00- 2.45	19	20	40	20	94	18.80	Low
WS123	1.00- 1.45	17	18	38	20	95	19.00	Low
WS124	2.00- 2.45	19	20	41	21	97	20.37	Medium

The results of the Atterberg limits testing confirmed that the soils would be deemed to be "Low to Medium Volume Change Potential" in accordance with the classification system utilised by the LABC/NHBC industry guidance.

8.13. pH AND SULPHATE

Chemical analyses for pH and soluble sulphate content contained in Appendix VI (summarised in Table 8.10), shows that the soils at the site generally meet Class DS-1, Aggressive Chemical Environment for Concrete Classification (ACEC) AC-1s in accordance with BRE *Special Digest 1* (2005).

TABLE 8.10 SUMMARY OF pH AND SULPHATE DATA

LOCATION	DEPTH (m)	SO ₄ IN 2:1 WATER/SOIL (g/l)	pH VALUE	CLASSIFICATION
WS101	2.3	0.036	7.7	
WS103	1.1	0.03	7.8	
WS106	1.2	0.054	6.8	
WS109	0.8	0.044	7.9	DC 1 AC 10
WS111	0.2	0.025	7.7	DS-1, AC-1s
WS116	0.7	0.013	8.1	
WS120	0.2	0.014	6.7	
WS121	0.1	0.019	6.4	

9. TIER I QUALITATIVE CONTAMINATED LAND RISK ASSESSMENT

E3P has undertaken a Tier 1 qualitative risk assessment to determine if any potential contaminants within the underlying soils and groundwater pose an unacceptable level of risk to the identified receptors.

9.1. DEVIATING SAMPLES

Deviating samples were to be avoided during the ground investigation by using best practice sampling procedures including use of appropriate sampling containers and adhering to the laboratory holding times for each contaminant analysis undertaken. The following is noted regarding sample deviations:

Deviations are recorded for the four groundwater samples. The deviations relate to the exceeding the maximum holding time for pH analysis. The identified deviations are not considered to have impacted the overall risk assessment. All other results are not identified as deviating.

9.2. HUMAN HEALTH RISK ASSESSMENT

At Tier 1 stage, the long term (chronic) human health toxicity of the soil has been assessed by comparing the on-site concentrations of organic and inorganic compounds with reference values published in LQM/CIEH S4UL (S4UL3267) for a residential end use with plant uptake. These values have been used due to the potential for cultivation in any proposed areas of landscaping.

The results of this comparison have been summarised within Table 9.1.

TABLE 9.1 SUMMARY OF INORGANIC AND HYDROCARBON TOXICITY ASSESSMENT FOR A RESIDENTIAL END USE

DETERMINANT	UNIT	GAC	N	МС	LOC. OF EX	PATH- WAY	ASSESSMENT	
Arsenic	mg/kg	37	20	24		1		
Cadmium	mg/kg	17	20	0.8		1		
Chromium (VI)	mg/kg	6.1	20	<4.0		1		
Lead	mg/kg	200	20	110		1		
Mercury	mg/kg	1.2	20	0.4		3		
Nickel	mg/kg	180	20	54		1		
Selenium	mg/kg	250	20	<1.0		1		
Copper	mg/kg	2400	20	89		1		
Zinc	mg/kg	3700	20	190		1		
Cyanide - Total	mg/kg	791	20	<1.0	NI/A	1	No Fronthan Astion	
Phenols - Total	mg/kg	210	9	<1.0	N/A	1	No Further Action	
Asbestos	Fibres	NFD	11	NAD		3		
Naphthalene	mg/kg	2.3	18	0.98		4		
Acenaphthylene	mg/kg	170	18	3.8		2		
Acenaphthene	mg/kg	210	18	0.36		1		
Fluorene	mg/kg	170	18	0.71		1		
Phenanthrene	mg/kg	95	18	5.3		2		
Anthracene	mg/kg	2400	18	3.1		2		
Fluoranthene	mg/kg	280	18	60		2		
Pyrene	mg/kg	620	18	77		2		
Benzo(a)Anthracene	mg/kg	7.2	18	45	WS111 0.2 m	2	Further Action	
Chrysene	mg/kg	15	18	36	WS111 0.2 m	2	Further Action	
Benzo(b)Fluoranthene	mg/kg	2.6	18	71 5.7 3.1	WS111 0.2 m WS123 0.2 m WS118 0.8 m	2	Further Action	
Benzo(k)Fluoranthene	mg/kg	77	18	26	N/A	2	No Further Action	
Benzo(a)Pyrene	mg/kg	2.2	18	70 5.5 2.8	WS111 0.2 m WS123 0.2 m WS118 0.8 m	2	Further Action	
Indeno(123-cd)Pyrene	mg/kg	27	18	26	N/A	2	No Further Action	
Dibenzo(a,h)Anthracene	mg/kg	0.24	18	7.0 0.61 0.37	WS111 0.2 m WS123 0.2 m WS118 0.8 m	2	Further Action	
Benzo(ghi)Perylene	mg/kg	320	18	30		2		
TPH C5-C6 (aliphatic)*	mg/kg	42	20	<1.0	NI/A	4	No Further Action	
TPH C6-C8 (aliphatic)*	mg/kg	100	20	<0.1	N/A	4		
TPH C8-C10 (aliphatic)*	mg/kg	27	20	<0.1	1	4		

DETERMINANT	UNIT	GAC	N	MC	LOC. OF EX	PATH- WAY	ASSESSMENT
TPH C10-C12 (aromatic)*	mg/kg	74	20	70		4	
TPH C12-C16 (aromatic)*	mg/kg	140	20	2700	WS106 0.8 m	4	Further Action
TPH C16-C21 (aromatic)*	mg/kg	260	20	9400	WS106 0.8 m	1	Further Action
TPH C21-C35 (aromatic)*	mg/kg	1100	20	3400	WS106 0.8 m	1	Further Action

Notes

PL1 = soil ingestion, PL2 = dermal contact and ingestion, PL3 = dust inhalation; PL4 = Vapour/Gas Inhalation; PL5 = Vertical / Lateral Migration; PL6 = Corrosion of concrete; PL7=Tainting of water supply; PL8 = Uptake by plants

Abbreviations: GAC = general assessment criteria, n = number of samples, MC = maximum concentration; Loc of Ex = location of exceedance; NFD = no fibres detected.

* The Tier 1 GAC for the hydrocarbon fraction is derived from the CIEH assessment for petroleum hydrocarbons Criteria Working Group (CWG) for both aliphatic and aromatic compounds. E3P has utilised the Tier 1 values for aliphatic compounds for the volatile and semi volatile fractions (C5-C12) and the Tier 1 values for aromatic compound for the non-volatile fractions (C12-C35). The comparison of a total (aliphatic/aromatic) compounds to an individual fraction is considered to be a conservative approach and satisfactory for the protection of human health.

Referring to Table 9.1, the results of this direct comparison indicates that the data exceeds the screening criteria for a residential end use for the following contaminants:

- Benzo(a)Anthracene;
- Chrysene;
- Benzo(b)Fluoranthene;
- Benzo(a)Pyrene;
- Dibenzo(a,h)Anthracene;
- Hydrocarbon Fractions C12-C35 (aromatic).

Asbestos has not been detected in any of the soil samples submitted for analysis.

No significant concentrations of SVOCs or VOCs were identified in the soils submitted for chemical analysis.

In relation to these exceedances, the following can be determined:

- The main exposure pathways based on the Tier I exceedances are:
 - Soil ingestion;
 - Vapour inhalation (indoor);
 - Dermal contact and ingestion; and
 - Consumption of homegrown vegetables;
- The exceedances for all determinands are associated with Made Ground deposits between 0.20 1.20 m bgl.

Land adjacent to HMP GarthPhase I & II Geoenvironmental Site Assessment August 2021

HUMAN HEALTH RISK ASSESSMENT AND MITIGATION

The risk to chronic human health associated with the elevated concentrations of non-volatile PAH and TPH compounds can be mitigated through the installation of a suitable cover system where Made Ground remains in all areas of landscaping to remove any potential for direct exposure to impacted soils.

The specific design and installation process for the appropriate cover systems will be clearly defined within the site remediation and enabling works strategy.

With regards to the elevated TPH C12-C16, these compounds present a potential volatilisation to indoor air risk. These elevated concentrations have only been identified within one location and are therefore considered to be a localised hotspot. Therefore, during a process of cut/fill enabling works, a hotspot removal should be undertaken where these soils may be chemically validated to assess chemical suitability for retention on site in an area of no future sensitivity.

Chemical analysis of the natural drift deposits has identified these soils to be acceptable for use as subsoil within the proposed areas of landscaping; however, further chemical validation samples will be required to confirm this.

Areas of natural topsoil are present in the north of the site. Six samples have been tested to date which suggest that the topsoil is suitable for re-use. Further chemical validation samples will be required during build phase to confirm this.

9.3. CONTROLLED WATERS RISK ASSESSMENT

E3P has undertaken a controlled waters risk assessment for the site based on the consideration of the conceptual site model and the sensitive receptors which are summarised in Table 9.2.

TABLE 9.2 CONTROLLED WATERS CONCEPTUAL MODEL AND SENSITIVITY PROFILE

DISCUSSION		SENSITIVITY RATING
Contaminant Source		
Made Ground infill material from histor boundaries. Variable Made Ground is (predominantly low-solubility) hydrocal	may be present as a result of the potential ical features such as infilled ponds and field present and Made Ground with high-level rbon impact is present at WS106. Cohesive he Made Ground to depths in excess of 5.45	Moderate
Pathway		
	s the site which will offer protection to the quifers. There are no potable groundwater	Low
•	the site which will inhibit lateral migration to	
Lateral migration Clay drift deposits are present across t the on-site ponds and drainage network		Low
Clay drift deposits are present across t		Low
Clay drift deposits are present across t the on-site ponds and drainage network		Low
Clay drift deposits are present across the on-site ponds and drainage network Receptor Aquifer Classification in Superficial	Secondary Undifferentiated aquifer Secondary A aquifer – there are no potable	
Clay drift deposits are present across the on-site ponds and drainage network Receptor Aquifer Classification in Superficial Drift Deposits	Secondary Undifferentiated aquifer Secondary A aquifer – there are no potable groundwater abstractions within 1.0 km.	Low
Clay drift deposits are present across to the on-site ponds and drainage network Receptor Aquifer Classification in Superficial Drift Deposits Aquifer Classification in Bedrock Groundwater Source Protection Zone	Secondary Undifferentiated aquifer Secondary A aquifer – there are no potable groundwater abstractions within 1.0 km. Secondary B aquifer	Low

The ICSM developed within the context of the site setting has viable pollutant pathway, which would be the lateral migration of potentially mobile phase-soluble contaminants towards the on-site ponds and drainage network. The sensitivity is reduced, given the presence of low permeability clay soils which will inhibit migration of any potentially mobile contaminants.

Land adjacent to HMP Garth

Phase I & II Geoenvironmental Site Assessment August 2021

To ensure a robust appraisal of the identified risk to controlled waters, E3P has identified the sources of potential contamination that represent a risk to controlled waters from the initial CSM, we have then assessed the availability of ground investigation data in the form of analysis of the solid phase (soil) and dissolved phase within the perched groundwater or aquifer. The results of this assessment are presented in Table 9.3.

TABLE 9.3 QUALITATIVE RISK TO CONTROLLED WATERS FROM SOIL ANALYTICAL RESULTS

CONTAMINANT	ASSESSMENT RATING	DISCUSSION
BTEX > 1 mg/kg Total VOC > 1 mg/kg	The soil data analysis has not identified any detectable concentrations of VOCs above 1mg/kg or TPH C5 to C6 that might otherwise be indicative of VOC impact.	None
Total SVOC > 1 mg/kg	SVOC analysis recorded concentrations below the laboratory LOD.	None
C5-C10 > 5 mg/kg	All concentrations are below the laboratory LOD.	None
C10-C12 > 10 mg/kg	Concentrations of C10-C12 have been recorded above 10 mg/kg and the maximum concentration was recorded in WS106 at 0.80 m bgl with a concentration 70 mg/kg.	Further discussion
C12-C16 > 50 mg/kg	Concentrations of C12-C16 have been recorded throughout the site and the maximum concentration was recorded within WS106 at 0.80 m bgl with a concentration 2700 mg/kg. This will be excavated as a localised hotspot.	Further discussion
Phenols > 2 mg/kg	All concentrations are below the laboratory LOD.	None
Naphthalene > 2 mg/kg	Concentrations of naphthalene are below 2 mg/kg.	None
Total PAH > 10 mg/kg	Total concentrations of low-solubility PAH compounds greater than 10 mg/kg have been detected in WS111 at 0.20 m bgl.	Further discussion
PCB > 1 mg/kg	No potential sources of PCB have been identified	None
Heavy metals > 500 mg/kg	Concentrations of heavy metals are all below 500 mg/kg.	None

The Tier I assessment has included a comparison of leachate analysis from samples of the Made Ground and groundwater samples to environmental quality standards (EQS).

These are presented in Table 9.4.

TABLE 9.4 COMPARISON OF GROUNDWATER AND LEACHATE ANALYSIS WITH TIER 1 SCREENING LEVELS

		EQS 1, 2, 3		NO. OF			NO. OF			
DETERMINAND	UNIT	AA	DWS 3,4,5	GW SAMPLES	MAX CONC. IN GROUNDWATER	LOCATION OF EXCEEDANCE	LEACHATE SAMPLES	MAX CONC. IN LEACHATE	LOCATION OF EXCEEDANCE	ASSESSMENT
Arsenic	μg/l	50	10	4	1.3	N/A	5	12	N/A	No Further Action
Cadmium	µg/l	0.08- 0.25	5	4	0.05	N/A	5	0.1	WS106	Further Action
Chromium (VI)	μg/l	3.4	_	4	-	N/A	5	<5.0	N/A	No Further Action
Chromium (III)	μg/l	4.7	50	4	6.7 5.9 4.8	WS119 WS109 WS112	5	1.6	N/A	Further Action
Copper	μg/l	1	2000	4	7.4 6.6 4.6 4.1	WS119 WS123 WS109 WS112	5	25 18 12 7.4 4.0	WS125 WS115 WS106 WS103 WS120	Further Action
Total Cyanide	µg/l	1	50	4	<1.0	N/A	5	<1.0	N/A	No Further Action
Lead	μg/l	1.2	10	4	0.2	N/A	5	8.1 4.8 4.6 3.2 3.1	WS106 WS120 WS115 WS103 WS125	Further Action
Mercury	μg/l	_	1.0	4	0.05	N/A	5	<0.5	N/A	No Further Action
Nickel	µg/l	4	20	4	8.8 5.6	WS109 WS123	5	3.5	N/A	Further Action
Selenium	µg/l	_	10	4	32	WS119	5	<4.0	N/A	Further Action
Zinc	μg/l	10.9	_	4	9.2	N/A	5	27 18 17	WS106 WS103 WS115	Further Action

		EQS 1, 2, 3		NO. OF			NO. OF			
DETERMINAND	UNIT	AA	DWS 3,4,5	GW SAMPLES	MAX CONC. IN GROUNDWATER	LOCATION OF EXCEEDANCE	LEACHATE SAMPLES	MAX CONC. IN LEACHATE	LOCATION OF EXCEEDANCE	ASSESSMENT
pH	6-9			4	7.0-7.5	N/A	5	7.5-8.0	N/A	No Further Action
Naphthalene	μg/l	2	10*	4	<0.01		5	<0.01		
Anthracene	μg/l	0.1	10*	4	<0.01		5	<0.01		
Benzo[b]fluoranthene	μg/l	0.00017*	10*	4	<0.01		5	<0.01		
Benzo[k]fluoranthene	μg/l	0.00017*	10*	4	<0.01		5	<0.01		
Benzo(a)pyrene	μg/l	0.00017*	10*	4	<0.01		5	<0.01	-	
Indeno(123-cd)pyrene	μg/l	0.00017*	10*	4	<0.01		5	<0.01	-	
Fluoranthene	μg/l	0.0063	10*	4	<0.01		5	<0.01	-	
Benzo(ghi)perylene	μg/l	1.7-4	10*	4	<0.01		5	<0.01	-	
TPH C5-C6 (benzene)	μg/l	10	1	4	<1.0		5	<1.0	-	
TPH C6-C8 (toluene)	μg/l	74	700	4	<1.0	N/A	5	<1.0	N/A	No Further Action
TPH C8-C10 (ethyl benzene)	μg/l	20	300	4	<1.0		5	<1.0		
TPH C10-C12 (xylene)	μg/l	30	500	4	<10		5	<10		
TPH C10-C12 (xylene)	μg/l	30	500	4	<10		5	<10	-	
TPH C12-C16	μg/l	2	90 ⁵	4	<10		5	<10	-	
TPH C16-C35	μg/l	50#	90 ⁵	4	<10		5	<10	-	
TPH C5-C6	μg/l	_	15000	4	<1.0		5	<10	-	
TPH C6-C8	μg/l	_	15000	4	<1.0		5	<10	-	
TPH C8-C10	μg/l	_	300	4	<1.0		5	<10		
TPH C10-C12	μg/l	_	300	4	<10		5	<10		

Land adjacent to HMP Garth

Phase I & II Geoenvironmental Site Assessment

August 2021

		EQS 1, 2, 3		NO. OF			NO. OF			
DETERMINAND	UNIT	AA	DWS 3,4,5	GW SAMPLES	MAX CONC. IN GROUNDWATER	LOCATION OF EXCEEDANCE	LEACHATE SAMPLES	MAX CONC. IN LEACHATE	LOCATION OF EXCEEDANCE	ASSESSMENT
TPH C12-C16	μg/l	_	300	4	<10		5	<10	N/A	
TPH C16-C21	μg/l	_	300**	4	<10		5	<10	N/A	
TPH C21-C35	μg/l	_	300**	4	<10		5	<10	N/A	N. F. d. A.
Tetrachloroethylene	μg/l	0.4	10	4	<1.0		0	-	-	
Trichloroethylene	μg/l	10	10	4	<1.0	NI/A	0	-	-	
Trichlorobenzene	μg/l	0.4	_	4	<1.0	N/A	0	-	-	No Further Action
Trichloromethane	μg/l	2.5	_	4	<1.0		0	-	-	·
Dichloromethane	μg/l	20	200	4	<1.0		0	-	-	
Carbon Tetrachloride	μg/l	12	3	4	<1.0		0	-	-	
Vinyl Chloride	μg/l	_	0.3	4	<1.0		0	-	-	

Notes

Solubility <0.01µg/l

AA - Annual Average

MAC- Maximum Admissible Concentration

- * Polyaromatic hydrocarbons (PAH) Benzo(a)pyrene (BaP), Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)-perylene and Indeno(1,2,3-cd)-pyrene. Benzo(a)pyrene can be considered as a marker for the other PAHs, hence only benzo(a)pyrene needs to be monitored for comparison with the biota EQS or the corresponding AA-EQS in water
- ** There are no WHO Guideline Values for aliphatic fractions C16-C21 and C21-C35, therefore the guideline value for aliphatic fractions inclusive of C8-C16 (300µg/l) has been applied.
- The Water Environment (Water Framework Directive) (England and Wales) (Amendment) Regulations (2015)
- 2. Directive establishing a framework for Community action in the field of water policy (Water Framework Directive)
- 3. Council Directive on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community (Dangerous Substances Directive) List II substances
- 4. Council Directive on the quality of water intended for human consumption (Drinking Water Directive)
- 5. WHO Guidelines for Drinking Water Quality. Third edition (2004)

9.3.1. CONTROLLED WATER RISK ASSESSMENT AND MITIGATION

This comparison indicates that	it the data exceeds the EQS	values for the fo	llowing inorganic compounds	3:
--------------------------------	-----------------------------	-------------------	-----------------------------	----

(7)	Cadmium;
()	Chromium (III);
()	Copper;
0	Lead;
0	Nickel;

Selenium:

Zinc

Where leachate analysis has been undertaken, this can overstate the risk and is not wholly representative of the site characterisation.

9.3.2. M-BAT ASSESSMENT

Due to exceedances in both soils and leachate samples for copper, nickel and zinc, an m-BAT assessment has been completed to assess the bioavailability of the metals with respect to surface water receptors (on-site ponds and drainage network). The chemical values from the groundwater analysis have been input into the assessment.

Where the Risk Characterisation Ratio (RCR) is greater than 1, this indicates the bioavailable concentration is above the EQS and the receptor is therefore at risk.

The m-BAT assessment has confirmed that the concentrations for copper, zinc and nickel have an RCR of less than 1, therefore they are not considered bioavailable.

In light of the above assessment, E3P do not consider the site to pose an unacceptable level of risk to surface waters for copper, zinc and nickel. It should also be noted the site is currently uncapped and the proposed development will largely encapsulate the site, thus limiting the potential for infiltration and therefore leaching potential.

However, further analysis of the surface water should be undertaken as groundworks progress, to ensure no future mobilisation of contaminants is caused.

9.3.3. FINAL PB SCREENING TOOL

Lead is not included in the M-BAT tool as it is not a full bioavailable EQS, however, a separate assessment using the Pb screening tool has been completed for lead. The assessment confirms that there are no exceedances of the RCR.

In light of the above assessment, E3P do not consider the site to pose an unacceptable level of risk to surface waters for lead.

9.3.4. DISCUSSION OF CONTROLLED WATERS RISK ASSESSMENT

Historical mapping suggests that the site was predominantly agricultural land with a number of small ponds until the 1970's when site a number of tracks and structures (MOD storage sheds) are present. A Sewage Pumping Station is recorded in the centre of the site, pre 2020 to the present day.

The exceedances of heavy metals are likely to be associated with the Made Ground identified in the southern and eastern sectors.

The site is underlain by cohesive drift deposits to depths in excess of 5.45 m which will inhibit lateral migration to on-site surface waters features and vertical migration to the underlying Secondary A and B aquifers. Therefore, impacted perched groundwater is not likely to migrate towards the controlled water receptors. In addition, the sensitivity of the aquifers is reduced, given the absence of any potable groundwater abstractions within 1.0 km.

Where leachate analysis has been undertaken, this can overstate the risk and is not wholly representative of the site characterisation.

The m-BAT and Pb screening tools have confirmed, the on-site surface water features are not at risk from the heavy metal contaminants identified within Table 8.4. Therefore, although heavy metals exceed EQS thresholds, they do not pose a risk to controlled waters as they are not bioavailable.

It should also be noted the site is currently uncapped and the proposed development will largely encapsulate the site, thus limiting the potential for infiltration and therefore leaching potential.

Given the general low soluble nature of the identified contaminants of concern, in addition to the presence of low permeability clay soils, it is considered there is unlikely to be any degree of unacceptable risk to the controlled water receptors and the wider environ.

9.4. GROUND GAS

The potential impact on the development from ground gases has been assessed with reference to standards and guidelines published in CIRIA Report 665 – Assessing risks posed by hazardous ground gases to buildings (2007). However, it is recommended that the full ground gas assessment and recommended protection measures are agreed with the local authority prior to their adoption on site. Furthermore, all protection measures adopted should be validated by a suitably qualified engineer.

9.1. INVESTIGATION RATIONALE

The ICSM has identified that the underlying Made Ground and infilled ponds may represent a potential source of ground gas generation. Based on the identification of these sources, E3P has determined that the site represents a low ground gas source generation potential.

Within the context of the proposed residential (prison) end use and ground gas generation potential, the gas assessment requires that six visits are required over three months, with at least two sets of readings at low or falling atmospheric pressure as set out within CIRIA 665 Tables 5.5a and 5.5b.

The spacing requirements for monitoring wells are detailed within CIRIA 665 Table 4.2, which indicates that for low gas hazard sites (Made Ground with limited degradable material, organic clay of limited thickness) and a high sensitivity development, nominal well spacing should be between 25 m and 50 m.

TABLE 9.5 GROUND GAS MONITORING LOCATION RATIONALE

LOCATION	GROUND GAS SOURCE	DEPTH OF MONITORING WELL (m)
WS102	Natural Drift Deposits	0.5-4.0
WS108	Natural Drift Deposits	0.5-4.0
WS109	Natural Drift Deposits	0.5-4.0
WS112	Natural Drift Deposits	0.5-4.0
WS119	Natural Drift Deposits	0.5-4.0
WS123	Natural Drift Deposits	1.0-4.0

9.2. MONITORING METHODOLOGY

Concentrations of methane (CH_4) , carbon dioxide (CO_2) and oxygen (O_2) were measured using a calibrated infra-red gas analyser (GFM435) with gas flow rates were measured using an integrated flow meter.

Gas measurements were recorded for a minimum of 60 seconds at each location, at which point the maximum concentration of CH_4 and CO_2 , together with the lowest concentration of O_2 were recorded. The results of the ground gas monitoring are presented in Table 8.9.

CIRIA C665 and NHBC Report No 10627-R01 provide assessments for carbon dioxide and methane based upon gas screening values (GSVs) utilising flow rates and concentrations. The site-based GSVs for steady state methane and carbon dioxide are based upon the following equation:

$$GSV = \frac{concentration (by vol)}{100} \times flowrate (1 / hr)$$

The GSVs within CIRA C665 are based upon all buildings other than standard residential houses. The thresholds for GSVs based upon CIRIA guidance are provided within Table 9.5.

TABLE 9.6 RESIDENTIAL THRESHOLDS FOR GAS SCREENING VALUES (GSV) IN ACCORDANCE WITH CIRIA C665 – COMMERCIAL END USE

CIRIA - NO SUBFLOOR VOID						
CLASSIFICATION	GSV (METHANE AND CARBON DIOXIDE)					
CS1	< 0.07					
CS2	< 0.70					
CS3	< 3.5					
CS4	< 15					
CS5	< 70					
CS6	> 70					

Land adjacent to HMP Garth

Phase I & II Geoenvironmental Site Assessment August 2021

9.2.1. SUMMARY OF MONITORING RESULTS

Table 9.7 presents of the ground gas and groundwater monitoring results to date.

TABLE 9.7 SUMMARY OF GROUND GAS MONITORING RESULTS

WELL	DATE	CH₄ INITIAL (%V/V)	CH₄ STEADY (%V/V)	CH₄ GSV (I/hr)	CO ₂ INITIAL (%V/V)	CO ₂ STEADY (%V/V)	CO ₂ GSV (I/hr)	O ₂ (%V/V)	ATMOS (mb)	ATMOS. DYNAMIC	FLOW (I/hr)	RESPONSE ZONE (m bgl)	DEPTH TO BASE (m bgl)	DEPTH TO WATER (m bgl)	
W0100	13/11/20	No Access								0.5.4.0	-	-			
WS102	01/12/20	0.1	0.1	0.0001	6.7	6.7	0.0067	8.7	1028	Rising	0.1	0.5-4.0	3.60	0.65	
WC100	13/11/20	0.1	0.1	0.0001	6.9	6.9	0.0069	10.6	1006	Rising	0.1	0.5-4.0	3.75	3.38	
WS108	01/12/20	0.1	0.1	0.0001	0.6	0.6	0.0006	19.1	1029	Rising	0.1		3.75	2.82	
WS109	13/11/20	0.1	0.1	0.0001	7.7	7.7	0.0077	11.7	1004	Rising	0.1	0.5-4.0	3.55	0.41	
W5109	01/12/20	0.1	0.1	0.0001	8.6	8.6	0.0086	9.5	1030	Rising	0.1		3.55	0.42	
WS112	13/11/20	0.1	0.1	0.0001	5.7	5.7	0.0057	12.1	1006	Rising	0.1	0.5-4.0	4.70	0.40	
W3112	01/12/20	0.1	0.1	0.0001	5.8	5.8	0.0058	12.3	1029	Rising	0.1	0.5-4.0	4.70	0.42	
WS119	13/11/20		No Access								0.5.4.0	-	-		
WSII9	01/12/20					No A	Access					0.5-4.0			
WC122	13/11/20		No Access							1010	-	-			
WS123	01/12/20					No A	Access					1.0-4.0	-	-	

9.2.2. SOURCES OF GROUND GAS

The Phase I report and subsequent ground investigation has identified the following potential sources of ground gas:

- Made Ground deposits;
- Infilled ponds and field boundaries.

9.2.3. GROUNDWATER

Monitoring wells WS109 and WS112 were flooded during the first two monitoring visits and cannot therefore be included within the gas assessment.

Within the remaining wells, groundwater levels were observed between 0.65 and 3.38 m bgl.

9.2.4. GAS FLOW

During the monitoring a positive flow was noted in WS102, WS108, WS109 and WS112. The measure of positive flow is considered to be the result of groundwater fluctuations and flooding of the well causing compression – as opposed to gas generation – as the highest flows are recorded during periods of high groundwater levels.

Negative flows are indicative of back pressure from wind being greater than the active flow from the wells. Negative flows have not been recorded during the initial monitoring visits.

9.2.5. GAS CONCENTRATIONS

No methane concentrations above the limit of detection were recorded in the monitoring wells.

Carbon dioxide concentrations were recorded within all the monitoring wells at concentrations ranging from 0.6% v/v to 8.6% v/v. The maximum carbon dioxide levels were also associated with low oxygen concentrations.

9.2.6. GAS ASSESSMENT

In accordance with the methodology outlined with the CIRIA publication C665, E3P have utilised the results of the ground gas monitoring surveys to calculate a tentative gas screening value (GSV). The GSVs for the monitoring positions are summarised in Table 9.8.

TABLE 9.8 GAS RISK PROFILE AND LOCATION

LOCATION	MAX CH ₄ (% v/v)	GSV (I/hr)	MAX CO ₂ (% v/v)	GSV (I/hr)	CLASSIFICATION
WS102	0.1	0.001	6.7	0.0067	CS2
WS108	0.1	0.0001	6.9	0.0069	CS2
WS109	0.1	0.0001	8.6	0.0086	CS2
WS112	0.1	0.0001	5.8	0.0058	CS2

The GSV has been compared to the criteria outlined with CIRIA C665 to determine the level of risk to the proposed development and to ensure the appropriate remedial options are incorporated into any future building design in this area.

Preliminary ground gas monitoring suggests that the site should be classified as CS2 and new prison structures will likely require specialist protection measures as detailed below.

9.3. RESIDENTIAL BUILDING GAS RISK MITIGATION

British Standard BS8485 (2015)+A1(2019) provides two types of residential property that require assessment. These building types are:

- Type A Building Private ownership with no building management controls on alterations to the internal structure, the use of rooms, the ventilation of rooms or the structural fabric of the building. Some small rooms are present. Probably conventional building construction (rather than civil engineering). Examples include private housing and some retail premises.
- Type B Building Private or commercial property with central building management control of any alterations to the building or its uses but limited or no central building management control of the maintenance of the building, including the gas protection measures. Multiple occupancy. Small- to medium-sized rooms with passive ventilation of rooms and other internal spaces throughout ground floor and basement areas. May be conventional building or civil engineering construction. Examples include managed apartments, multiple occupancy offices, some retail premises and parts of some public buildings (such as schools, hospitals, leisure centres) and parts of hotels.

Based on the ground gas risk assessment and the proposed Type B Building, it is envisaged that a point score of 3.5 will be required for affected properties, as summarised in Table 9.9.

TABLE 9.9 BS 8485 (2015) POINTS REQUIRED FOR TYPE A AND TYPE B BUILDINGS

CHARACTERISTIC	NHBC TRAFFIC LIGHT	MINIMUM GAS PROTECTION SCORE (POINTS)					
SITUATION	SYSTEM	HIGH SENSITIVITY					
		TYPE A BUILDING	TYPE B BUILDING				
1	Green	0	0				
2	Amber 1	3.5	3.5				
3	Amber 2	4.5	4				
4	Red	6.5	5.5				
5	N/A	N/A	6.5				
6	N/A	N/A	N/A				

Residential buildings should not be built on CS4 or higher sites unless the type of construction or site circumstances allow additional levels of protection to be incorporated, for example, high-performance ventilation or pathway intervention measures, and an associated sustainable system of management of maintenance of the gas control system such as in institutional and/or fully serviced contractual situations.

The requisite 3.5 points must be achieved by installation of a suitable combination of measures detailed in Table 9.10.

TABLE 9.10 SUMMARY OF GROUND GAS MITIGATION MEASURES - BS8485 (2015)+A1(2019)

GAS PROTECTION SCORES FOR THE STRUCTURAL BARRIER	SCOREA
Floor and Substructure Design	
Precast Suspended Segmental Subfloor (Beam and Block)	0
Cast In-Situ Ground-Bearing Floor Slab (With Only Nominal Mesh Reinforcement)	0.5
Cast In-Situ Monolithic Reinforced Ground-Bearing Raft or Reinforced Cast In-Situ Suspended Floor Slab With Minimal Penetrations	1 or 1.5 ^B
Basement Floor and Walls Conforming to BS 8102:2009, Grade 2 Waterproofing ^c	2
Basement Floor and Walls Conforming to BS 8102:2009, Grade 3 Waterproofing ^c	2.5

- A) The scores are conditional on breaches of floor slabs, etc. being effectively sealed.

 B) To achieve a score of 1.5 the raft or suspended slab should be well reinforced to control cracking and have minimal penetrations cast in (see A.2.2.2).
- C) The score is conditional on the waterproofing not being based on the use of a geosynthetic clay liner waterproofing product (see C.3, Note 4).

PROTECTION ELEMENT SYSTEM	1	SCORE	COMMENTS
Gas protection scores for ventila	tion protection mea	sures	
(a) Pressure Relief Pathway – Use fines gravel or with a thin geocor strips terminating in a gravel tree building.	mposite blanket or	0.5	Whenever possible a pressure relief pathway (as a minimum) should be installed in all gas protection measures systems. If the layer has a low permeability and/or is not terminated in a venting trench (or similar), then the score is 0.
(b) Passive Subfloor Dispersal	Very good performance	2.5	The ventilation effectiveness of different media depends on a number
Layer – Media used to provide the dispersal layer are: Clear void; Polystyrene void former blanket; Geocomposite void former blanket; No-fines gravel layer with gas drains; and No-fines gravel layer.	Good performance	1.5	of different factors including the transmissivity of the medium, the width of the building, the side ventilation spacing and type and the thickness of the layer. The selected score should be assigned taking into account the recommendations in Annex B of BS 8485 (2015). Passive ventilation should be designed to meet at least "good performance".
(c) Active Dispersal Layer – Usua with active abstraction (suction dilution layer with roof-level vents may comprise a clear void of geocomposite or polystyrene void) from a subfloor c. The dilution layer or be formed of	1.5 to 2.5	This system relies on continued serviceability of the pumps, therefore alarm and response systems should be in place. There should be robust management systems in place to ensure the continued maintenance of the system, including pumps and vents. Active ventilation should always be designed to meet at least "good performance".

PROTECTION ELEMENT SYSTEM	SCORE	COMMENTS
(d) Active Positive Pressurisation – Provided by the creation of a blanket of external fresh air beneath the building floor slab by pumps supplying air to points across the central footprint of the building into a permeable layer, usually formed of a thin geocomposite blanket.	1.5 to 2.5	This system relies on continued operation of the pumps, therefore alarm and response systems should be in place. The score assigned should be based on the efficient "coverage" of the building footprint and the redundancy of the system. Active ventilation should always be designed to meet at least "good performance".
(e) Ventilated Car Park – Floor slab of occupied part of the building under consideration is underlain by a basement or undercroft car park.	4	Assumes that the car park is vented to deal with car exhaust fumes, designed to Buildings Regulations 2000, Approved Document F [9].

PROTECTION ELEMENT SYSTEM	SCORE	COMMENTS		
Gas Protection Score for the Gas-Resistant Membrane				
Gas-resistant membrane meeting all of the following criteria: Sufficiently impervious to the gases with a methane gas transmission rate < 40.0 ml/day/m²/atm (average) for sheet and joints (tested in accordance with BS ISO 15105-1 manometric method); Sufficiently durable to remain serviceable for the anticipated life of the building and duration of gas emissions; Sufficiently strong to withstand in-service stresses (e.g. settlement if placed below a floor slab); Sufficiently strong to withstand the installation process and following trades until covered (e.g. penetration from steel fibres in fibre-reinforced concrete, penetration of reinforcement ties, tearing due to working above it, dropping tools); Capable, after installation, of providing a complete barrier to the entry of the relevant gas; and Verified in accordance with CIRIA C735.	2	The performance of membranes is heavily dependent on the quality and design of the installation, resistance to damage after installation and integrity of joints. For example, a minimum 0.4 mm thickness (equivalent to 370 g/m² for polyethylene) reinforced membrane (virgin polymer) meets the performance criteria opposite. If a membrane is installed that does not meet all the criteria opposite, then the score is 0.		

9.4. POTABLE WATER SUPPLY

This section provides a summary of the site investigation data with reference to the selection of potable water supply pipework. The assessment is made with reference to the UK Water Industry Research (UKWIR) publication "Guidance on the selection of Water Supply Pipes to be used in Brownfield Sites"

TABLE 9.11 PIPELINE SELECTION PE THRESHOLD CONCENTRATIONS

Contaminant Group	PE-threshold (mg/kg)	Concentrations at Current pipeline depth (mg/kg)	
Total VOC	0.5	<0.001	
Total BTEX And MTBE	0.1	<0.1	
Total SVOCs (Excluding PAH and those substances marked with an *)	2	<0.3	
EC5-EC10 Aliphatic and Aromatic Hydrocarbons	2	<1.0	
EC10-EC16- Aliphatic and Aromatic Hydrocarbons	10	2700	
EC16-EC40 Aliphatic and Aromatic Hydrocarbons	500	9400	
Phenols (From SVOC Analysis)*	2	<0.2	
Cresols and Chlorinated Phenols (From SVOC Analysis)	2	<0.3	
Ethers*	0.5	NA	
Nitrobenzene*	0.5	NA	
Ketones*	0.5	NA	
Aldehydes*	0.5	NA	
Amines	Fail	NA	
Other Consideration			
Are there any exceedances of the PE threshold outside of the pipeline depth?	Yes - WS106 0.80 m bgl.		
Is free product present in soil and groundwater?	None		
Could hydrocarbon impact at greater depth than current pipeline depth be mobilised by rising groundwater levels?	Yes – shallow groundwater has been identified. The hydrocarbon impact at WS106 will be excavated as a localised hotspot.		
Will soils impacted with above determinands likely be utilised elsewhere on site?	Currently unknown – the soils may be reused in POS.		
Will soils be imported to site as part of any future earth works	Currently unknown. The importation of materials may affect the WIR Risk Assessment which should be updated after completion.		

Notes - Pipe line depth normally between 0.75m-1.35m

Based on the assessment of current site conditions it is likely that barrier pipe will be required at the proposed development.

9.5. CONCEPTUAL SITE MODEL

Following the completion of the intrusive site investigation, chemical analysis and risk assessment, the conceptual model shown in Table 9.12 has been prepared for the site.

TABLE 9.12 CONCEPTUAL MODEL

POLLUTANT LINKAGE	CONTAMINANT (SOURCE)	PATHWAY	RECEPTOR	PROBABILITY	CURRENT RISK	RESIDUAL RISK AFTER MITIGATION
PL1 PL2	Non-volatile PAH (Made Ground)	Dermal contact. Dermal contact and ingestion.	Future site users. Off-site receptors.	Likely	High	LOW

Discussion:

Non-volatile PAH identified throughout Made Ground between depths of 0.20 m and 1.20 m bgl.

Recommendation:

Cover system to landscaped areas where Made Ground remains will prevent exposure to future site users. Construction works completed with PPE and provision of welfare.

PL4	Volatile Contaminants such as hydrocarbons, (Made Ground)	Inhalation of vapours. Migration through permeable strata and	Future site users. Off-site receptors.	Likely	Moderate	LOW
				,		

Assessment:

Significantly elevated TPH C12-C35 has been identified in the Made Ground in WS106 at 0.80 m bgl. A hydrocarbon odour was also noted in this location.

Recommendation:

The soils should be excavated as a localised hotspot, with chemical analysis to determine if the soils can be retained on site in an area of low sensitivity.

POLLUTANT LINKAGE	CONTAMINANT (SOURCE)	PATHWAY	RECEPTOR	PROBABILITY	CURRENT RISK	RESIDUAL RISK AFTER MITIGATION
PL4	Methane, carbon dioxide (potentially infilled features on and within 250 m of the site)	Inhalation of gas. Migration through permeable strata and preferential pathways. Explosion in confined spaces.	Future site users. Buildings. Off-site land users.	Low likelihood	Moderate	LOW

Assessment:

The identified Made Ground and hydrocarbon impact are sources of hazardous ground gas.

Recommendation:

The monitoring to date suggests that new prison structures will require ground gas mitigation measures in accordance with CS2 due to elevated concentrations of carbon dioxide (up to 8.6 % v/v).

Mobile contaminants such as metals, (Made Ground) Perche waters migratio	Groundwater (Secondary A aquifer – Drift, Secondary B aquifer - Bedrock). Surface water (Ponds, drainage network).	Low Likelihood	Low	LOW
---	---	-------------------	-----	-----

Assessment:

The Tier 1 assessment has identified exceedances of the EQS for cadmium, chromium (III), copper, lead, nickel, selenium and zinc. The exceedances of heavy metals are likely to be associated with the Made Ground identified in the southern and eastern sectors.

The site is underlain by cohesive drift deposits to depths in excess of 5.45 m which will inhibit lateral migration to on-site surface waters features and vertical migration to the underlying Secondary A and B aquifers. Therefore, impacted perched groundwater is not likely to migrate towards the controlled water receptors. In addition, the sensitivity of the aquifers is reduced, given the absence of any potable groundwater abstractions within 1.0 km.

The m-BAT and Pb screening tools have confirmed, the on-site surface water features are not at risk from the heavy metal contaminants identified within Table 8.4. Therefore, although heavy metals exceed EQS thresholds, they do not pose a risk to controlled waters as they are not bioavailable.

Phase I & II Geoenvironmental Site Assessment August 2021

POLLUTANT LINKAGE	CONTAMINANT (SOURCE)	PATHWAY	RECEPTOR	PROBABILITY	CURRENT RISK	RESIDUAL RISK AFTER MITIGATION
----------------------	-------------------------	---------	----------	-------------	-----------------	--------------------------------------

It should also be noted the site is currently uncapped and the proposed development will largely encapsulate the site, thus limiting the potential for infiltration and therefore leaching potential.

Recommendation:

Given the general low soluble nature of the identified contaminants of concern, in addition to the presence of low permeability clay soils, it is considered there is unlikely to be any degree of unacceptable risk to the controlled water receptors and the wider environ.

However, further analysis of the surface water should be undertaken as groundworks progress, to ensure no future mobilisation of contaminants is caused.

PL6	Organic contaminants such as hydrocarbons, (Made Ground)	Ingestion of tainted water supply.	Future site users. Water pipes.	Likely	Moderate	LOW
-----	--	---	---------------------------------	--------	----------	-----

Assessment:

Likely probability as elevated TPH has been encountered at pipeline depth at WS106.

Recommendation:

Following a process of remediation works and the removal of the identified hotspot, PE pipe may be suitable for the proposed development. A pipeline risk assessment should be completed following a process of remediation and enabling works.

	PL7	Phytotoxic contaminants (Made Ground)	Direct Contact (plant uptake).	Flora.	Likely	Low	LOW	
--	-----	---	---	--------	--------	-----	-----	--

Assessment:

Likely probability as contamination considered possible, which may be taken up by flora in soft landscaping/gardens.

Recommendation:

Provision of a clean cover system in areas of Made Ground.

Main exposure pathways:

PL1 = soil ingestion, PL2 = dermal contact and ingestion, PL3 = dust inhalation; PL4 = Vapour/Gas Inhalation; PL5 = Vertical / Lateral Migration; PL6 = Corrosion of concrete; PL7=Tainting of water supply; PL8 = Uptake by plants;

10. GEOTECHNICAL ASSESSMENT

10.1. PROPOSED DEVELOPMENT

E3P understands that Pick Everard are working on behalf of the Ministry of Justice for hybrid planning application seeking: Outline planning permission (with all matters reserved except for access, parking and landscaping) for a new prison (up to 74,531.71 sqm GEA) (Class C2A) within a secure perimeter fence following demolition of existing buildings and structures and together with associated engineering works; Outline planning permission for a replacement boiler house (with all matters reserved except for access); and Full planning permission for a replacement bowling green and club house (Class F2(c)).

10.2. SUMMARY OF GROUND CONDITIONS

Made Ground

Made Ground deposits were encountered within the majority of exploratory hole locations to depths of between 0.20 m and in excess of 3.45 m bgl (WS101) although, in general, Made Ground was encountered to a depth of less than 1.50 m bgl.

Made Ground deposits generally comprise a reworked topsoil of dark brown silty clayey fine to medium sand with sandstone, ceramic and brick. Beneath the reworked topsoil, Made Ground comprises dark brown gravelly fine to coarse sand and soft to firm gravelly clay with mudstone, brick and concrete.

A hydrocarbon odour was noted in WS106 between 0.80 m to 1.00 m bgl. A relict topsoil layer was identified between 0.40 m and 0.60 m bgl and organic matter was also noted in WS106 between 0.80 m to 1.50 m bgl.

A strong organic odour was noted in the reworked clay in WS118 between 0.60 m and 1.50 m bgl.

WS101 adjacent to the existing boiler house refused on a possible obstruction at 3.45 m bgl.

A Depth of Made Ground Plan is presented as Drawing 14-451-006 in Appendix III.

Topsoil

Natural topsoil was encountered in localised areas as dark brown slightly clayey fine to medium SAND with rootlets in the northern sector and as soft to firm dark brown to black CLAY in the south east sector. Topsoil depths ranged from between 0.23 m to 0.32 m bgl.

Drift

Drift deposits were encountered in all exploratory locations, with the exception of WS101 where the full depth of Made Ground could not be proven. The drift deposits were encountered to depths in excess of 5.45 m bgl.

The drift deposits are fairly consistent, generally comprising firm low strength to very stiff very high strength greyish brown gravelly CLAY with mudstone.

The drift deposits are fairly consistent, generally comprising firm medium strength to very stiff very high strength greyish brown gravelly CLAY with mudstone.

Phase I & II Geoenvironmental Site Assessment August 2021

Localised lenses of granular drift deposits were encountered, generally comprising medium dense greyish brown clayey silty gravelly fine to medium SAND with mudstone. Loose GRAVEL was identified in WS103 between 1.00 m to 2.00 m bgl.

Solid Geology

The solid bedrock geology was not encountered during the ground investigation. BGS boreholes in the vicinity of the site suggest that the drift deposits are present to depths in excess of 15.00 m bgl.

Groundwater

Groundwater was encountered as seepages between 1.00 and 3.50 m bgl during the site investigation with monitoring recording groundwater levels between 0.40 and 3.38 m bgl

10.3. SITE PREPARATION

The site should be cleared and any vegetation below areas of proposed development stripped in accordance with Series 200 of the *Manual of Contract Documents for Highway Works (MCHW)*. This should include the following:

- Roots present below the footprint of proposed structures and infrastructure should be grubbed out and the resulting void infilled with suitable compacted engineered fill.
- Demolition of all existing buildings and removal of all hardstanding.
- Redundant services should be sealed off and grubbed out and replaced with suitable compacted engineered fill.

10.4. FOUNDATION CONDITIONS AND ASSESSMENT OF POTENTIAL BEARING CAPACITIES

In due consideration of the identified ground conditions, in-situ and laboratory geotechnical testing, E3P has undertaken an assessment of the net safe allowable bearing pressure (ABP) within the underlying natural stratum to assist in the detailed design of foundations and infrastructure and determine the target founding stratum. The results of this assessment are summarised in Table 10.1.

TABLE 10.1 SUMMARY OF ABP

GRANULAR SOILS								
Description Depth (Range m bgl) Relative Density Allowable Bearing Pressure (kN/m²)								
Silty SAND (WS115)	1.00	Medium Dense	121					
SAND (WS121)	4.00	Medium Dense	110					
GRAVEL (WS103) 1.00 Loose 81								
COHESIVE SOILS								

Phase I & II Geoenvironmental Site Assessment August 2021

Description	Depth (range m bgl)	Undrained Shear Strength (Cu) (kN/m²)	Allowable Bearing Pressure (kN/m²)
Firm Gravelly CLAY	1.00-2.00	20-37	41-75
Stiff to Very Stiff Gravelly CLAY	1.00-5.45	40-217	83-447

Based on the assessment of the relative undrained shear strength, relative in-situ densities and corresponding safe net allowable bearing pressure, the suitable target founding stratum has been identified as the underlying firm to very stiff glacial clays and localised areas of medium-dense sands.

Significant obstructions will be present beneath the existing structures. A possible obstruction was noted in WS101 at 3.45 m bgl.

During a phase of cut-and-fill enabling works to create a developable platform, all below-ground obstructions will require grubbing out to the base of the Made Ground to enable the construction of proposed plots.

Where proposed levels remain similar, it is likely that structures could be constructed using strip or trench fill foundations bearing on the underlying firm to very stiff clays or medium dense sands, subject to the required bearing stratum being present at a shallow depth and the absence of tree influence.

Where the suitable founding stratum is greater than 2.50 m bgl and in areas of deep Made Ground an engineered foundation solution will be required. Where structures are located within the vicinity of the infilled ponds, ground improvement may be required.

There is the potential for peat or organic soils to be present in the location of the existing ponds. Dependent on development levels, structures in these areas may require a driven pile foundation.

Foundation depths should take account of the presence of existing and proposed trees, with foundations deepened locally to mitigate the potential for volumetric instability attributed to fluctuations in moisture content, in accordance with the requirements of NHBC standards.

It is recommended that at working drawing stage a foundation schedule is prepared for the development, taking account of the physical change of natural clay soils and the current/proposed locations of trees.

To determine if VSC is viable at the subject site, E3P has completed a Ground Improvement Design Risk Matrix that is summarised in Table 10.2.

TABLE 10.2 GROUND IMPROVEMENT DESIGN RISK MATRIX

RISK ITEM	COMMENT	PASS/FAIL
Soft clays with an undrained shear strength less than 30 kN/m ²	CLAY soils are generally firm to very stiff with Cu > 30 kN. Isolated areas of softer clay soils were encountered with Cu < 30 kN/m²; however, it is considered that these will either be piled or soft material excavated to remove the organic deposits.	PASS
Ground with peat layers close to foundation level or the base of the stone column, or where intermediate layers of peat are thicker than 200 mm, either as a single layer or the sum of the thicknesses of individual layers throughout the length of the stone column	None identified, however there is the potential for organic soils to be present in the location of former and existing ponds. A relict topsoil layer was identified between 0.40 m and 0.60 m bgl and organic matter was also noted in WS106 between 0.80 m to 1.50 m bgl.	Further in investigation required in the location of former/existing ponds.
Voided filled ground, e.g. old water tanks, pottery, glass bottles, concrete rubble or brick fill of unsuitable grading	Made Ground will require removal and processing to render the site suitable for VSC. The existing buildings substructure will also require excavation and processing into a graded aggregate suitable for vibro treatment.	PASS – on completion of enabling works
Loose or non-engineered fill not previously subject to rising or fluctuating water levels saturation	None identified.	PASS
Filled ground still settling or expected to settle under its own weight or due to the effects of surcharging/upfilling where there is a high organic content or where decay is continuing	None identified	PASS
Fill, containing degradable material where organic material forms more than 15% of fill by volume	None identified.	PASS
Clays with a plasticity index greater than 40%	None identified.	PASS
Highly sensitive soils liable to collapse or remoulding	None identified.	PASS
Cohesive soils with trees in influencing distance	Plots where tree influence has been modelled and will either be subject to a piled or mass trench-fill solution.	PASS
Overall Risk Rating and Suitability fo	r Vibratory Ground Improvement	PASS

A summary of anticipated foundations is presented in Table 10.3.

Phase I & II Geoenvironmental Site Assessment August 2021

TABLE 10.3 ANTICIPATED FOUNDATIONS

TADLE 10.5	ANTICIFATE	TABLE 10.3 ANTICIPATED FOUNDATIONS							
LOCATION	ANTICIPATED FOUNDING STRATA DEPTH (m bgl)	GROUND WATER (m bgl)	TARGET STRATUM	TREES	FOUNDATION TYPE	TYPE OF CONCRETE			
WS101	>3.45	2.00	Stiff CLAY	N	Pile/Vibro	DS-1 AC-1s			
WS102	1.45	N/A	Stiff CLAY	Υ	Mass Trench	DS-1 AC-1s			
WS103	3.45	N/A	Stiff CLAY	Υ	Pile/Vibro	DS-1 AC-1s			
WS104	2.45	N/A	Firm CLAY	Υ	Mass Trench	DS-1 AC-1s			
WS105	2.45	1.00	Stiff CLAY	Υ	Mass Trench	DS-1 AC-1s			
WS106	1.95	1.50	Firm CLAY	Υ	Mass Trench	DS-1 AC-1s			
WS107	1.05	N/A	Stiff CLAY	N	Strip	DS-1 AC-1s			
WS108	0.90	N/A	Firm CLAY	N	Strip	DS-1 AC-1s			
WS109	1.45	N/A	Stiff CLAY	Υ	Mass Trench	DS-1 AC-1s			
WS110	1.05	1.50	Stiff CLAY	Υ	Mass Trench	DS-1 AC-1s			
WS111	1.45	N/A	Stiff CLAY	Υ	Mass Trench	DS-1 AC-1s			
WS112	0.90	N/A	Stiff CLAY	Υ	Mass Trench	DS-1 AC-1s			
WS113	1.45	N/A	Stiff CLAY	N	Strip	DS-1 AC-1s			
WS114	0.90	N/A	Stiff CLAY	Υ	Mass Trench	DS-1 AC-1s			
WS115	0.90	N/A	MD SAND	Υ	Strip	DS-1 AC-1s			
WS116	1.25	N/A	Stiff CLAY	N	Strip	DS-1 AC-1s			
WS117	1.45	1.00	Stiff CLAY	N	Strip	DS-1 AC-1s			
WS118	1.95	1.00	Stiff CLAY	N	Mass Trench	DS-1 AC-1s			
WS119	0.90	3.00	Stiff CLAY	N	Strip	DS-1 AC-1s			
WS120	0.90	N/A	Stiff CLAY	N	Strip	DS-1 AC-1s			
WS121	0.90	3.00	Stiff CLAY	Υ	Mass Trench	DS-1 AC-1s			
WS122	1.05	N/A	Stiff CLAY	Υ	Mass Trench	DS-1 AC-1s			
WS123	1.45	N/A	Stiff CLAY	Υ	Mass Trench	DS-1 AC-1s			
WS124	1.45	3.50	Firm CLAY	N	Strip	DS-1 AC-1s			
WS125	1.65	N/A	Stiff CLAY	N	Mass Trench	DS-1 AC-1s			

It is recommended that, at working drawing stage, a foundation schedule is prepared for the development taking account of the physical change of natural clay soils and the current/proposed locations of trees.

Phase I & II Geoenvironmental Site Assessment August 2021

10.5. GROUND FLOOR SLABS

Following enabling works, the site will likely have a variable thickness of Made Ground, that may extend to significant depth in places. Given the structures that are proposed, it is considered that ground-bearing floor slabs will require settlement analysis and detailed design in order to accommodate variability of the formation and account for differential settlement.

Given the depth of Made Ground and its loose/variable nature, it will be necessary to undertake some form of Ground Improvement work to ensure the total and differential settlement is within tolerable limits for the Uniformly Distributed Load of the floor slab and any external reinforced concrete yards / hardstanding.

It is considered that Ground Improvement by either High Energy Impact Compaction or Vibro Stone Columns would provide a viable engineering solution to ensure the required ABP for a ground bearing floor slab.

As an alternative to the above, a more traditional solution which comprises the excavation of the upper stratum of Made Ground prior to re-engineering and compaction as a structural upfill be considered. Limitations with this approach would be attributed to the inherent variability of the material and issues arising from fluctuations in moisture content, which are exaggerated during periods of seasonal variance with increased precipitation and reduced evaporation.

Where a ground-bearing floor slab is to be constructed within the conjectured zone of tree influence, the clay will need to be removed to ensure that any desiccated soil cannot swell and induce heave to the structure. Alternatively, it may be possible to design the structure to resist the influence of clay heave using exaggerated sub-base and additional reinforcement within the slab to be designed by the structural engineer.

Where it is necessary to undertake cut-and-fill works utilising site-derived cohesive soils, careful consideration must be given to seasonal climatic conditions, which will have a significant impact of moisture conditions and the ability to compact clay soils in the wetter winter months. It may be necessary to undertake an element of stabilisation works through the addition of lime to ensure the soils can be engineered to the required performance standards.

It would be possible to utilise soil stabilisation techniques that incorporate the addition of lime and OPC to construct a stiffened soil horizon with a CBR > 15% to constitute a sub-base replacement layer that could then be capped with Type 1 MOT. The use of soil stabilisation could be extended within the conjectured zone of tree influence to modify the structure of clay soils and negate the potential for volumetric instability.

10.6. HEAVE PRECAUTIONS

The site has been proven to be underlain by clay soils which are susceptible to volumetric instability due to fluctuations in moisture content, particularly within influencing distance of trees as per the NHBC / LABC conjectured zones of influence.

As the clay is deemed to be Medium Volume Change Potential, if a ground floor slab is constructed with a cast in-situ suspended floor slab, an engineered design will be required for the heave precautions.

A summary of heave precautions is presented in Table 10.4.

TABLE 10.4 SUMMARY OF HEAVE PRECAUTIONS

		MINIMUM VOID D FOUNDATIONS, GRO SUSPENDED IN-SITU O FLOO	MINIMUM VOID DIMENSIONS UNDER PRECAST CONCRETE AND SUSPENDED TIMBER FLOORS		
Plasticity Index of Soil	Required Foundation Depth (m)	Thickness of Void Former Against Side of Foundation or Ground Beam (mm) Thickness of Void Former on Underside of Edge Beam and Floor Slab (mm)		Void Dimension (mm)	
High	> 2.5	Engineer	Design	Engineer Design	
Plasticity	2.0-2.5	35	150	200	
(> 40)	1.5-2.0	25	75	300	
Moderate	> 2.5	Engineer	Design	Engineer Design	
Plasticity	2.0-2.5	25	100	050	
(20-40) 1.5-2.0		25	50	250	
Low	2.0-2.5	N/A	50		
Plasticity (< 20) > 2.0 No Special Precaution		recautions	200		

10.7. HIGHWAYS CONSTRUCTION

A programme of remediation and enabling works will be required to remediate the proposed road subgrade in accordance with the requirements of the Manual of Contract Documents for Highway Works Volume 1 Specification For Highway Works (Series 600-Earthworks) for a method compaction.

It is considered that the material can be re-engineered using method compaction to achieve a CBR in excess of 5% if works are completed in favourable climatic conditions.

10.8. DRAINAGE

The presence of substantial depths of Made Ground across some areas of the site may result in settlement. It is therefore recommended that drain runs are designed using steeper gradients and flexible joints to allow for some differential settlement.

Furthermore, the site is predominantly underlain by likely low-permeability CLAY. Therefore, the use of soakaway drainage will be limited, and it is not recommended that soakaways are utilised for disposal of surface water runoff.

Proposed drainage has been outlined within Proposed Drainage Strategy Report (Ref: 608623-0000-PEV-GHX0011-ZZ-RP-C-0502, Dated 7th April 2021).

Phase I & II Geoenvironmental Site Assessment August 2021

10.9. CONCRETE DURABILITY

Based upon the results of the chemical analyses it is considered that subsurface concrete can be designed in accordance with Design Sulphate Class DS-1, Aggressive Chemical Environment for Concrete Classification (ACEC) AC-1s in accordance with the recommendations provided in BRE Special Digest 1 (2005).

10.10. EXCAVATIONS

Site observations indicated that excavations should be feasible in the near surface with normal plant; however, obstructions will be present beneath existing buildings. It is anticipated that any obstructions will be grubbed out during the reduced-level dig for the substructure works.

However, due to the depth and variability of the Made Ground and likelihood of trench collapse, it is considered that all excavations are supported or battered back in accordance with guidance contained in CIRIA R97.

If local pumping of groundwater is required during the advancement of excavations for the proposed foundations then consideration should be given to the potential for dewatering gravels in the surrounding areas that may cause structural damage to building substructures in close proximity to the site.

TABLE 10.5 CIVIL ENGINEERING EXCAVATION RISK MATRIX

TABLE 10.5 GIVIE ENGINEERING EXOAVATION MOR WATRIX			
RISK ITEM	PRESENT	COMMENT	
Running Sands	No	No running sands have been identified.	
Minor Water Ingress	Yes	Minor water ingress will require localised dewatering/sump pumping during the construction of site drainage infrastructure. Ingress of water into foundation excavation will potentially flood foundation excavations, limiting the viability of spread foundations to be constructed.	
Shallow Bedrock	No	Cohesive drift deposits are present to depths in excess of 5.45 m bgl.	

10.11. CONSTRUCTION ACTIVITY AND INSPECTION

The following activities and inspections should be incorporated into the site works:

- Due to the variability of the soils at the site, it is recommended that sufficient allowance is made for the inspection of formations and subformations to foundations and pavement construction.
- Excavations where access is required should be subject to a risk assessment from a competent person and, where appropriate, mitigation measures such as benching back the sides or use of support systems in accordance with CIRIA R97 should be utilised.
- It is considered that dewatering may be required, especially following periods of heavy rainfall. Removal of surface water and water within trenches should be possible with conventional sump pumping. Discharge of any water should be agreed with the relevant regulatory body and be undertaken under a trade effluent discharge, where required. Measures to remove silt and suspended solids may be required and consideration should be given to provision of space for settling tanks or an attenuation pond.
- Where access to confined spaces is required, appropriate mitigation measures should be addressed within the construction stage health and safety plan. Particular account should be taken of the gas results.
- The presence of potential contamination and mitigation measures should be addressed as part of the construction stage health and safety plan and should include measures to design out the risks, reduce their impact and, finally, to include the use of personnel protective equipment (PPE).

10.12. GEOTECHNICAL RISK REGISTER

POTENTIAL ABNORMAL CONSTRAINT	LOCATION ON SITE	ESTIMATED AREA OF SITE AT RISK (%)	ASSESSMENT AND MITIGATION	
Remediation of contaminated soils	On site	<5 %	Material at WS106 deemed to have a potential vapour risk will require hotspot removal, resulting the requirement to backfill the resulting void. Should significant backfill be needed deeper or specialist foundations may be required in those areas.	
Obstructions	On site	20	Obstructions will be present beneath the existing buildings.	
Artificially levelled and filled platforms	South east	20	The exercise land appear to have been levelled and artificially backfilled.	
Trench collapse	On site	10	Made Ground present beneath the site is likely to be loosely compacted and possibly prone to collapse.	
Mature trees	On site	350	A tree survey has been undertaken to support the planning application with findings recorded within Arboricultural Impact Assessment and Method Statement (Ref: 08623-0000-TYL-GHX0000-XX-RP-X-0002, Dated 27th July 2021)	
Volume change potential clay	On site	100	Assessment of the cohesive soils indicates that they have low and moderate volume change potential, and therefore heave precautions will be required.	
Peat	On site	TBC	None identified, however there is the potential for peat or organic soils to be present in the location of existing and former ponds. A relict topsoil layer was identified between 0.40 m and 0.60 m bgl and organic matter was also noted in WS106 between 0.80 m to 1.50 m bgl.	
Running sands	N/A	N/A	Data searches indicate low risk.	
Ground dissolution	N/A	N/A	Data searches indicate no hazard.	
Concrete design	On site	N/A	DS-1, AC-1s.	

POTENTIAL ABNORMAL CONSTRAINT	LOCATION ON SITE	ESTIMATED AREA OF SITE AT RISK (%)	ASSESSMENT AND MITIGATION
Low-permeability ground	On site	100	Soakaways unlikely to be effective in areas where low permeability cohesive deposits are present. Proposed Drainage for the site has been outlines within Proposed Drainage Report (Ref 608623-0000-PEV-GHX0011-ZZ-RP-C-0502, Dated 7th April 2021)
Services/sensitive structures	On site	TBC	A review of online services has identified a number of services within the site boundary. Piling may not be possible within close proximity to any sensitive infrastructure.
Abnormal foundation solutions	On site	5	Isolated areas of deep Made Ground and soft/loose deposits have been encountered, therefore an engineered foundation may be required in these locations.
Areas not investigated	Central sector/East	20	The ground beneath the existing buildings and the area to the east surrounding the large pond has not been investigated to date.
Surface water features	On site	10	Two ponds and a drainage network are present.
Current ponds to be filled	East /North West	10	There are two existing ponds on site, however it is not known whether these will remain as part of the final development. There is the potential for peat or organic soils to be present in the location of the existing ponds. Dependent on development levels, structures in these areas may require a driven pile foundation.
Historically infilled pond	Central sector	10	The former ponds will need to be clearly identified and investigated to assess the nature of materials and extent of any organic or deleterious elements. Where structures are located within the vicinity of the infilled ponds a piled foundation solution may be required.

10.13. FURTHER WORKS

Based on the findings of the intrusive site investigation, the following additional works are recommended to be completed in due course:

- Further investigation of inaccessible areas.
- Plot-specific foundation schedule (upon receipt of the final development levels).
- Remediation and enabling works strategy.
- Onstruction phase Surface Water Management Plan.

11. CONCLUSIONS AND RECOMMENDATIONS

11.1. CONTAMINATED LAND ASSESSMENT

	The Tier I Human Health Assessment has identified elevated concentrations of non-volatile PAH compounds and hydrocarbon fractions C12-C35 (aromatic).			
	The risk to chronic human health associated with the elevated concentrations of non-volatile PAH and TPH compounds can be mitigated through the installation of a suitable cover system where Made Ground remains all areas of landscaping and public open space to remove any potential for direct exposure to impacted soils.			
	The specific design and installation process for the appropriate cover systems will be clearly defined within the site remediation and enabling works strategy.			
Human Health	With regards to the elevated TPH C12-C16, these compounds present a potential volatilisation to indoor air risk. These elevated concentrations have only been identified within one location (WS106) and are therefore considered to be a localised hotspot. Therefore, during a process of cut/fill enabling works, a hotspot removal should be undertaken where these soils may be chemically validated to assess chemical suitability for retention on site in an area of no future sensitivity.			
	Chemical analysis of the natural drift deposits has identified these soils to be acceptable for use as subsoil within the proposed areas of landscaping; however, further chemical validation samples will be required to confirm this.			
	Areas of natural topsoil are present in the north of the site. Six samples have been tested to date which suggest that the topsoil is suitable for re-use. Further chemical validation samples will be required to confirm this.			
	The Tier 1 assessment has identified exceedances of the EQS for cadmium, chromium (III), copper, lead, nickel, selenium and zinc.			
Controlled Waters	Given the general low soluble nature of the identified contaminants of concern, in addition to the presence of low permeability clay soils, it is considered there is unlikely to be any degree of unacceptable risk to the controlled water receptors and the wider environ.			
Ground Gas	Preliminary ground gas monitoring suggests that the site should be classified as CS2 due to elevated concentrations of carbon dioxide (up to $8.6 \% v/v$) and new prison structures will likely require specialist protection measures			
Potable Water	This will need to be confirmed following the completion of a UKWIR risk assessment. Post-remediation and enabling works ground conditions may be different from those identified during this site investigation.			

Phase I & II Geoenvironmental Site Assessment August 2021

11.2. GEOTECHNICAL ASSESSMENT

Significant obstructions will be present beneath the existing structures. A possible obstruction was noted in WS101 at 3.45 m bgl.

During a phase of cut-and-fill enabling works to create a developable platform, all below-ground obstructions will require grubbing out to the base of the Made Ground to enable the construction of proposed plots.

Based on the assessment of the relative undrained shear strength, relative in-situ densities and corresponding safe net allowable bearing pressure, the suitable target founding stratum has been identified as the underlying firm to very stiff glacial clays and localised areas of medium-dense sands.

Where proposed levels remain similar, it is likely that structures could be constructed using strip or trench fill foundations bearing on the underlying firm to very stiff clays or medium dense sands, subject to the required bearing stratum being present at a shallow depth and the absence of tree influence.

Where the suitable founding stratum is greater than 2.50 m bgl and in areas of deep Made Ground an engineered foundation solution will be required. Where structures are located within the vicinity of the infilled ponds, ground improvement may be required.

There is the potential for peat or organic soils to be present in the location of the existing ponds. Dependent on development levels, structures in these areas may require a driven pile foundation.

Foundation depths should take account of the presence of existing and proposed trees, with foundations deepened locally to mitigate the potential for volumetric instability attributed to fluctuations in moisture content, in accordance with the requirements of NHBC standards.

END OF REPORT

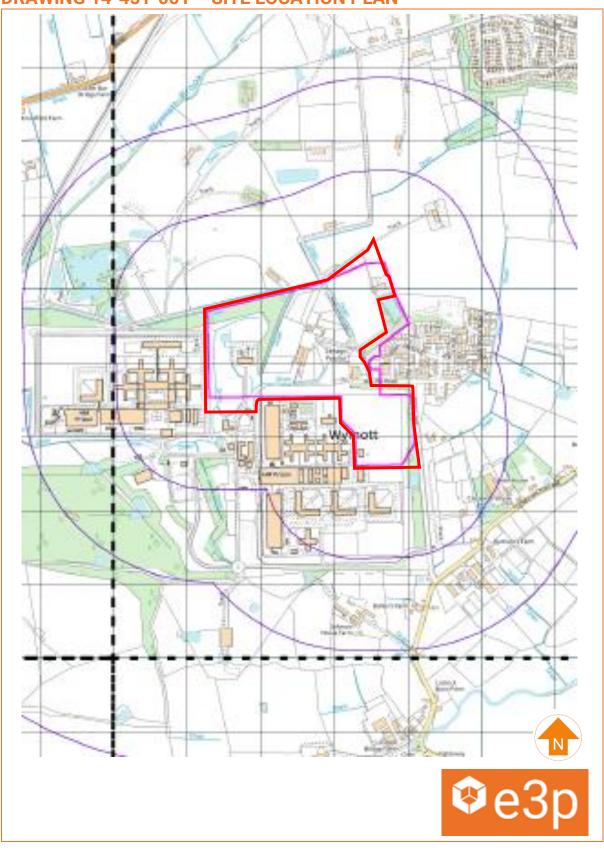
APPENDIX I LIMITATIONS

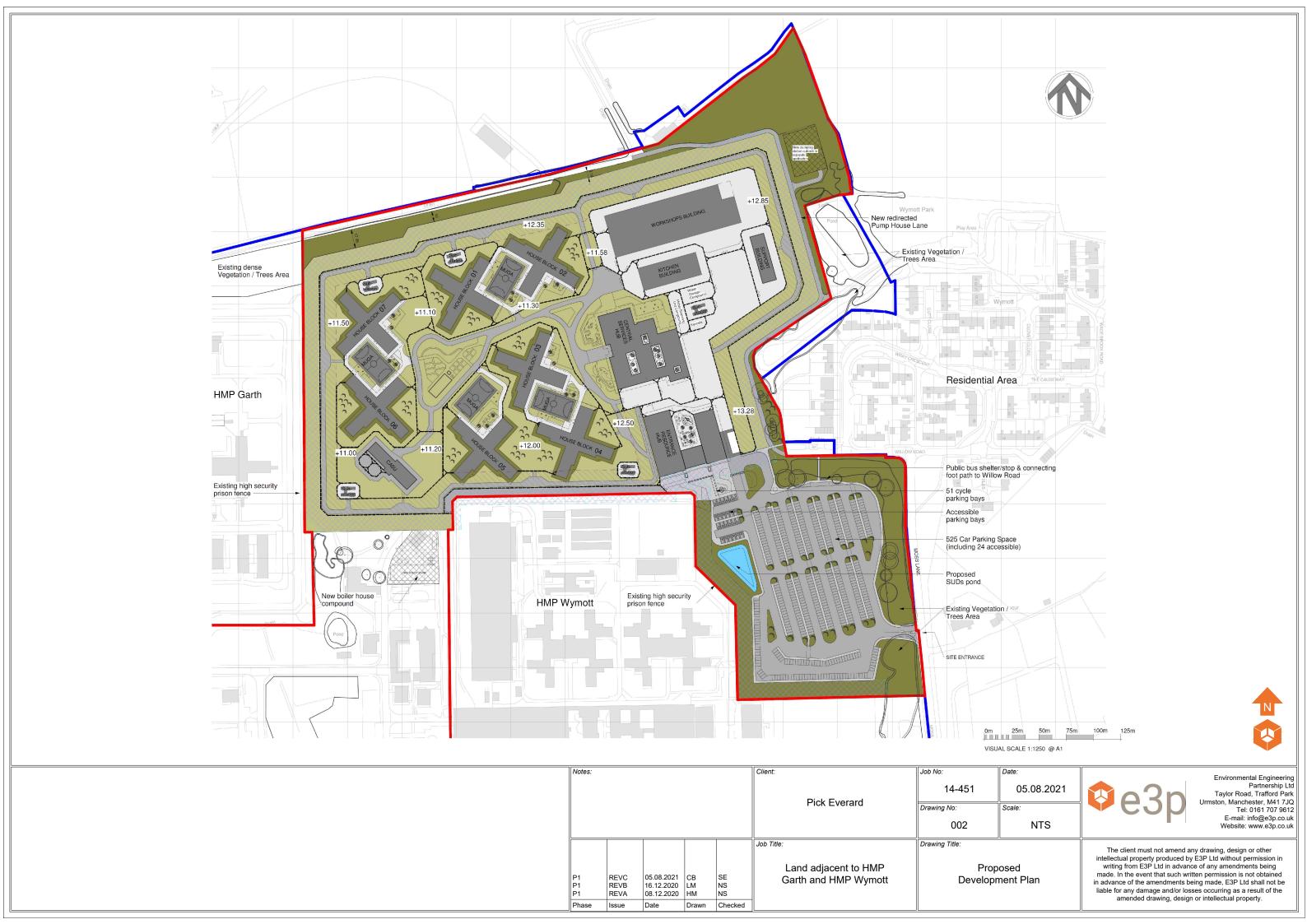
- 1. This report and its findings should be considered in relation to the terms of reference and objectives agreed between E3P and the client as indicated in Section 1.3.
- 2. For the work, reliance has been placed on publicly available data obtained from the sources identified. The information is not necessarily exhaustive and further information relevant to the site may be available from other sources. When using the information it has been assumed it is correct. No attempt has been made to verify the information.
- 3. This report has been produced in accordance with current UK policy and legislative requirements for land and groundwater contamination which are enforced by the local authority and the Environment Agency. Liabilities associated with land contamination are complex and requires advice from legal professionals.
- 4. During the site walkover, reasonable effort has been made to obtain an overview of the site conditions. However, during the site walkover, no attempt has been made to enter areas of the site that are unsafe or present a risk to health and safety, are locked, barricaded, overgrown, or the location of the area has not been made known or accessible.
- 5. Access considerations, the presence of services and the activities being carried out on the site limited the locations where sampling locations could be installed and the techniques that could be used.
- 6. Site sensitivity assessments have been made based on available information at the time of writing and are ultimately for the decision of the regulatory authorities.
- 7. Where mention has been made to the identification of Japanese Knotweed and other invasive plant species and asbestos or asbestos-containing materials, this is for indicative purposes only and do not constitute or replace full and proper surveys.
- The executive summary, conclusions and recommendations sections of the report provide an overview and guidance only and should not be specifically relied upon without considering the context of the report in full.
- 9. E3P cannot be held responsible for any use of the report or its contents for any purpose other than that for which it was prepared. The copyright in this report and other plans and documents prepared by E3P is owned by them and no such plans or documents may be reproduced, published or adapted without written consent. Complete copies of this may, however, be made and distributed by the client as is expected in dealing with matters related to its commission. Should the client pass copies of the report to other parties for information, the whole report should be copied, but no professional liability or warranties shall be extended to other parties by E3P in this connection without their explicit written agreement there to by E3P.
- 10. New information, revised practices or changes in legislation may necessitate the reinterpretation of the report, in whole or in part.

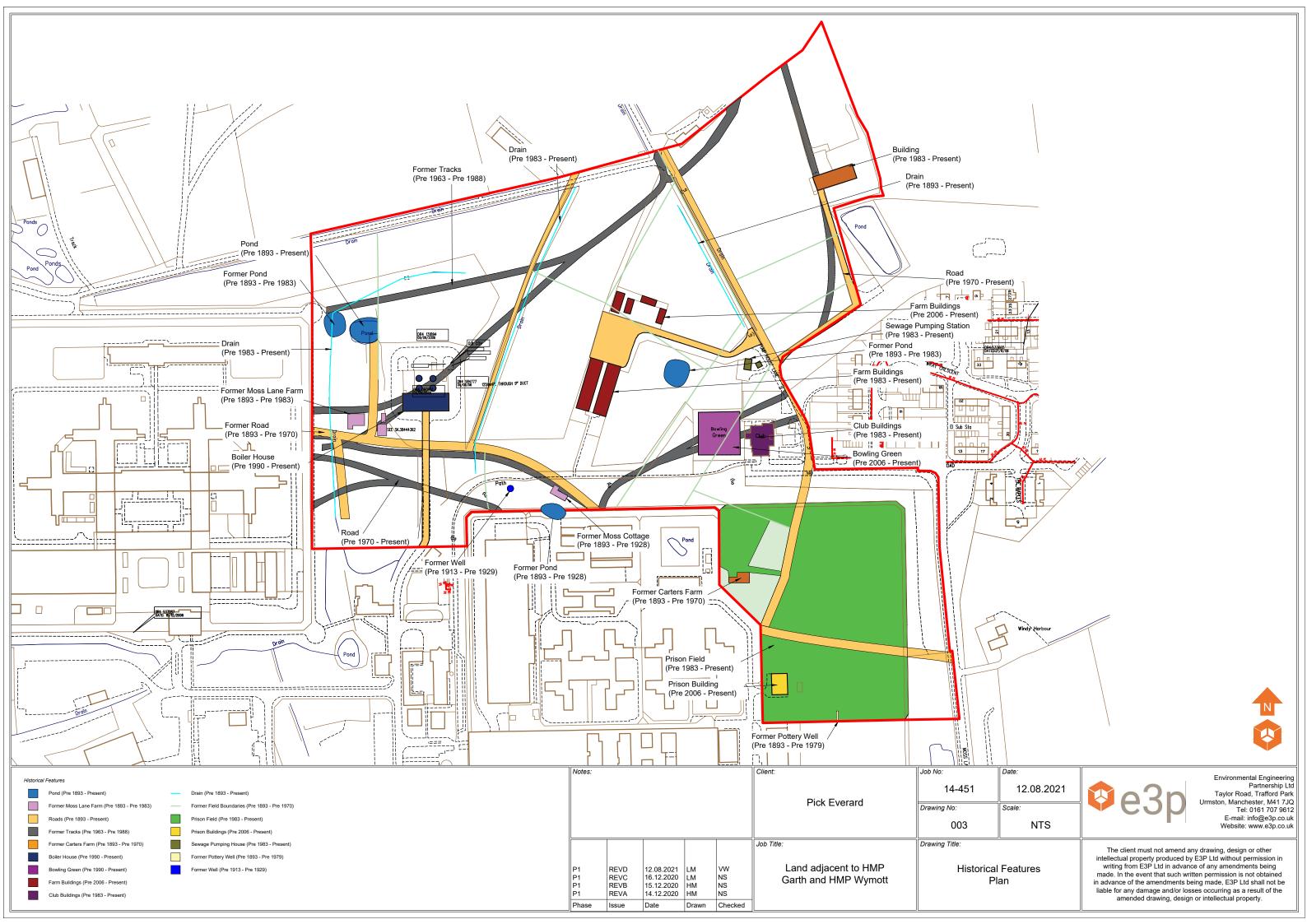
APPENDIX II GLOSSARY

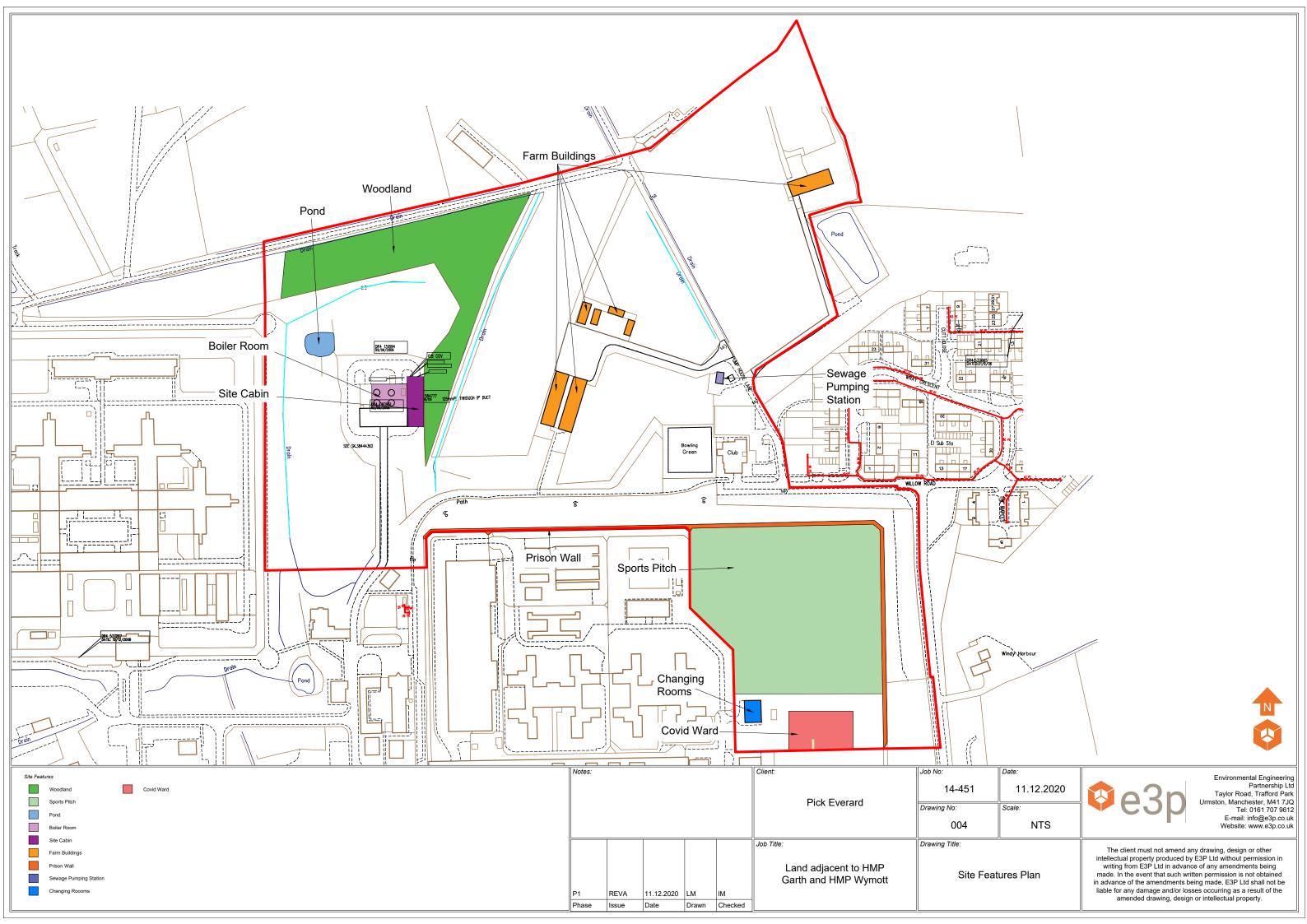
TERMS

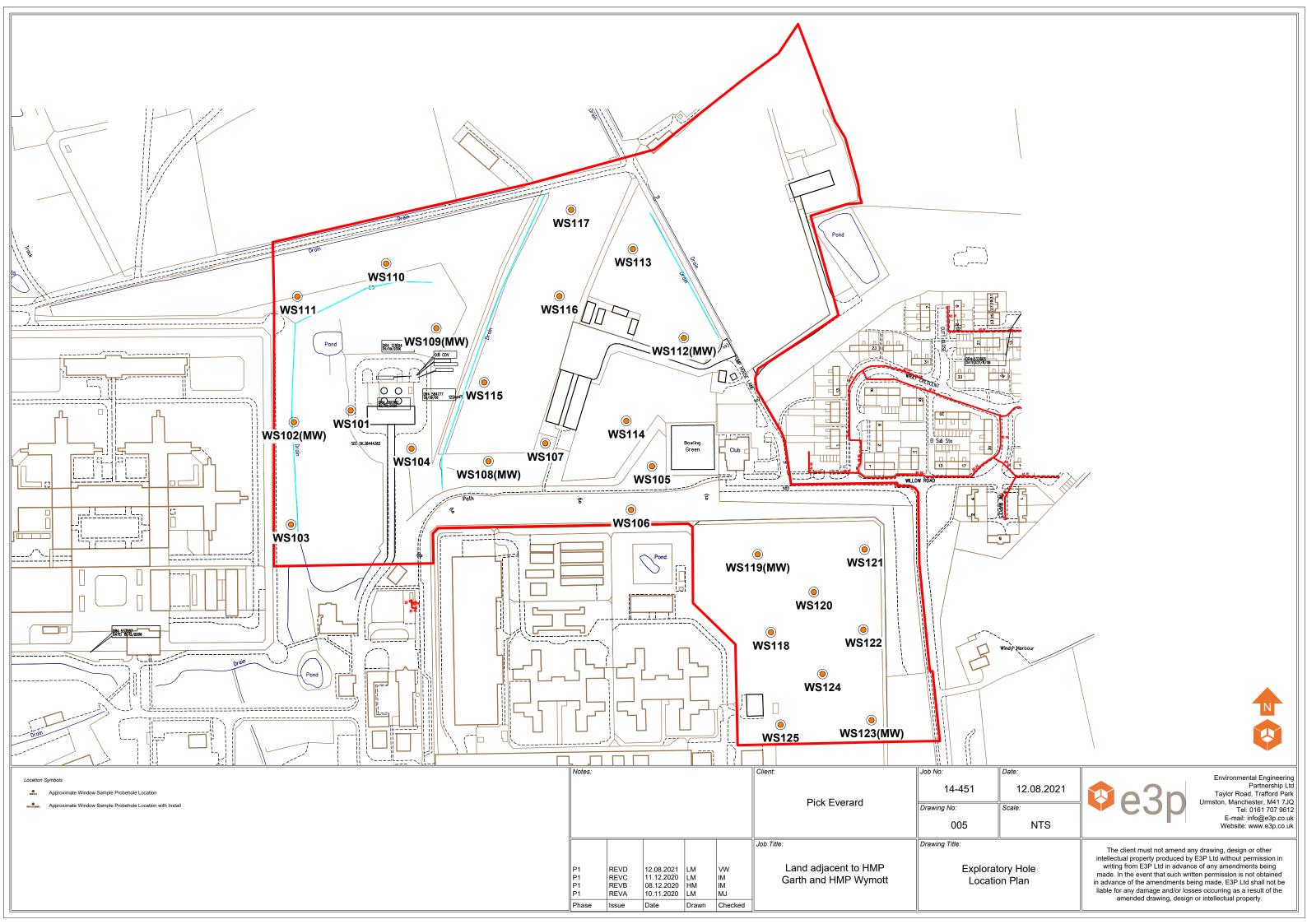
ACM	Asbestos-containing material	MMP	Materials management plan
ADS		ND	Not detected
	Acoustic design statement	NDP	
AST	Above-ground storage tank		Nuclear density probe
BGS	British Geological Survey	NMP	Noise management plan
BSI	British Standards Institute	NPSE	Noise policy statement for England
ВТЕХ	Benzene, toluene, ethylbenzene, xylenes	NR	Not recorded
CA	Coal Authority	PAH	Polycyclic aromatic hydrocarbon
CBR	California bearing ratio	PCB	Polychlorinated biphenyl
CIEH	Chartered Institute of Environmental Health	PI	Plasticity index
CIRIA	Construction Industry Research Association	PID	Photo ionisation detector
CLEA	Contaminated land exposure assessment	POS	Public open space
CML	Council of Mortgage Lenders	PPE	Personnel protective equipment
CoC	Contaminants of concern	ProPG	Professional practice guidance
CSM	Conceptual site model	QA	Quality assurance
DNAPL	Dense non-aqueous phase liquid (chlorinated solvents, PCB)	SGV	Soil guideline value
DWS	Drinking water standard	SPH	Separate-phase hydrocarbon
EA	Environment Agency	SPT	Standard penetration test
EQS	Environmental quality standard	SVOC	Semi-volatile organic compound
FFL	Finished floor level	ТРН	Total and speciated petroleum hydrocarbon
GAC	General assessment criteria	TPH CWG	Total Petroleum Hydrocarbon (Criteria Working Group)
GL	Ground level	UKWIR	United Kingdom Water Infrastructure Risk
GSV	Gas screening value	UST	Underground storage tank
HCV	Health criteria value	vcc	Vibro-concrete column
ICSM	Initial conceptual site model	voc	Volatile organic compound
LEL	Lower explosive limit	VRSC	Vibro-replacement stone columns
LMRL	Lower method reporting limit	VSC	Vibro-stone columns
LNAPL	Light non-aqueous phase liquid (petrol, diesel, kerosene)	WHO	World Health Organisation
MCV	Moisture condition value	WRAP	Waste and Resources Action Programme

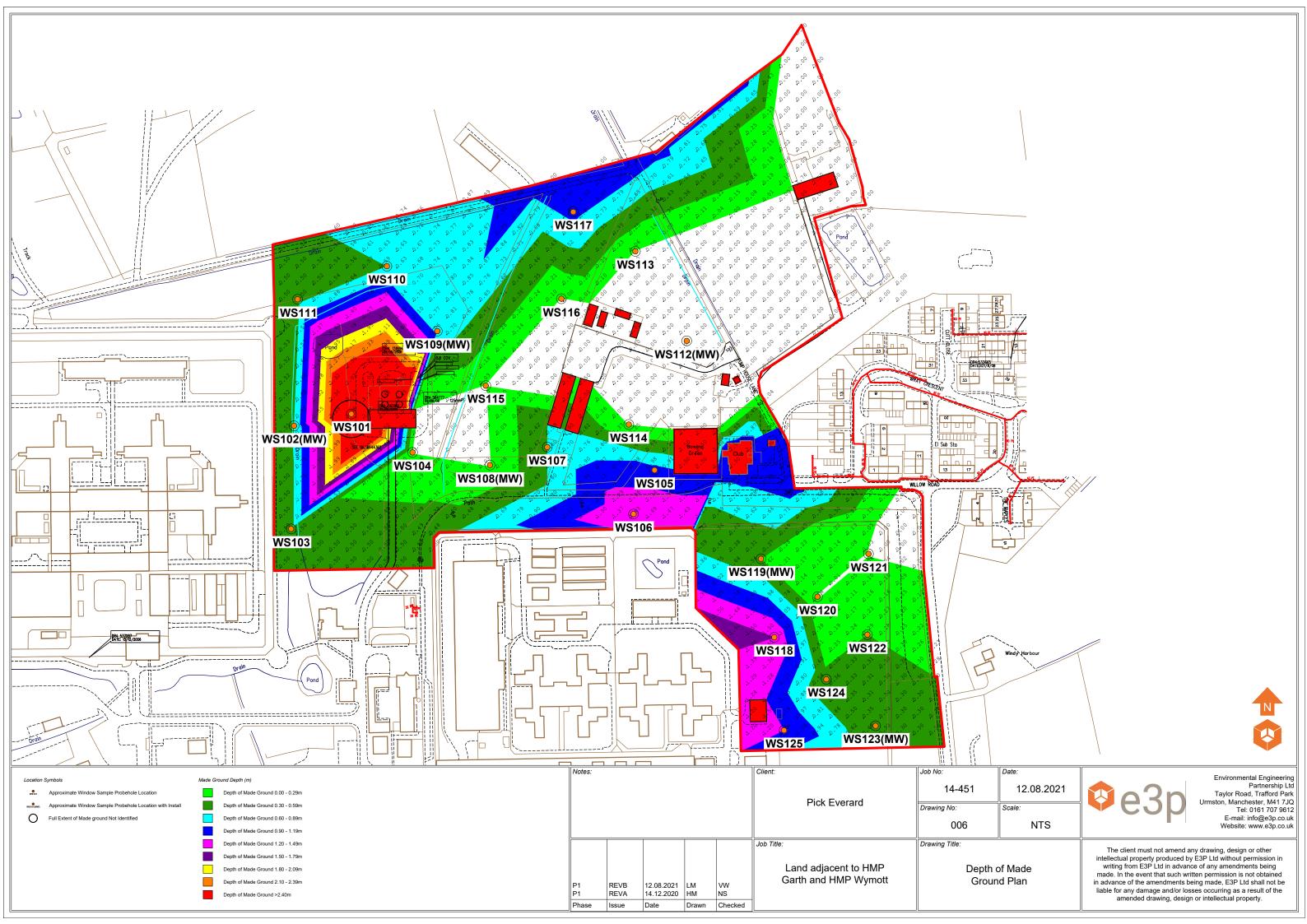

Land adjacent to HMP GarthPhase I & II Geoenvironmental Site Assessment
August 2021

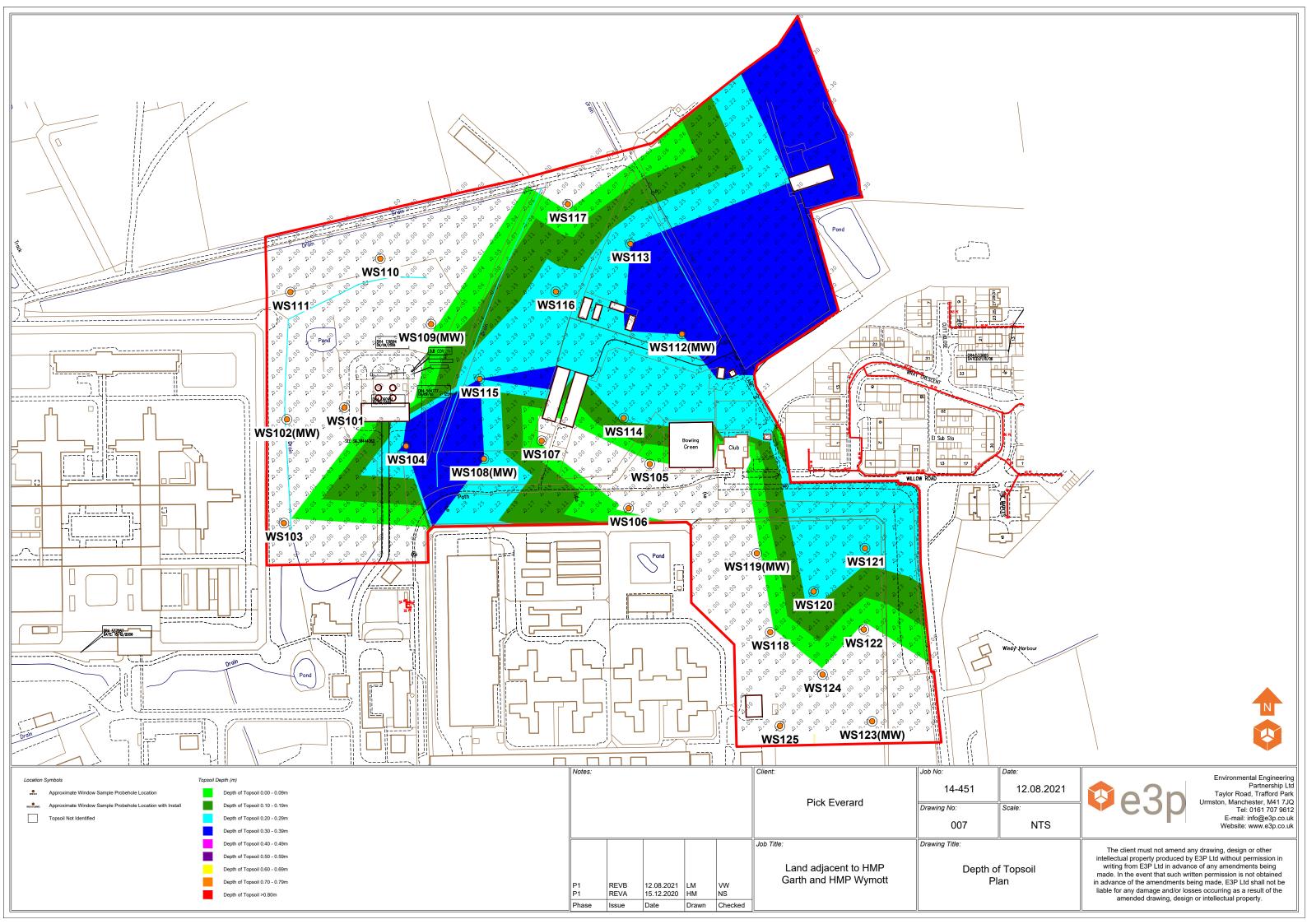

MIBK	Methyl isobutyl ketone	WTE	Water table elevation
m	Metres	ppm	Parts per million
km	Kilometres	mg/m³	Milligram per metre cubed
% v/v	Percent volume in air	m bgl	Metres below ground level
mb	Millibars (atmospheric pressure)	m bcl	Metre below cover level
l/hr	Litres per hour	mAOD	Metres above ordnance datum (sea level)
μg/l	Micrograms per litre (parts per billion)	kN/m ²	Kilonewtons per metre squared
ppb	Parts per billion	μm	Micrometre
mg/kg	Milligrams per kilogram (parts per million)	SSRT	Site Specific Remediation Target
PSD	Particle Size Distribution	DD	Dry Density
CL:AIRE	Contaminated Land: Applications in Real Environments	Мс	Moisture Content
ρ	Bulk Density	GPR	Ground Penetrating Radar
NDP	Nuclear Density Probe	FFL	Finished Floor Level
LEL	Lower Explosive Limit	UKWIR	UK Water Industry Research
CIRIA	Construction Industry Research and Information Association	LOD	Limit of Detection

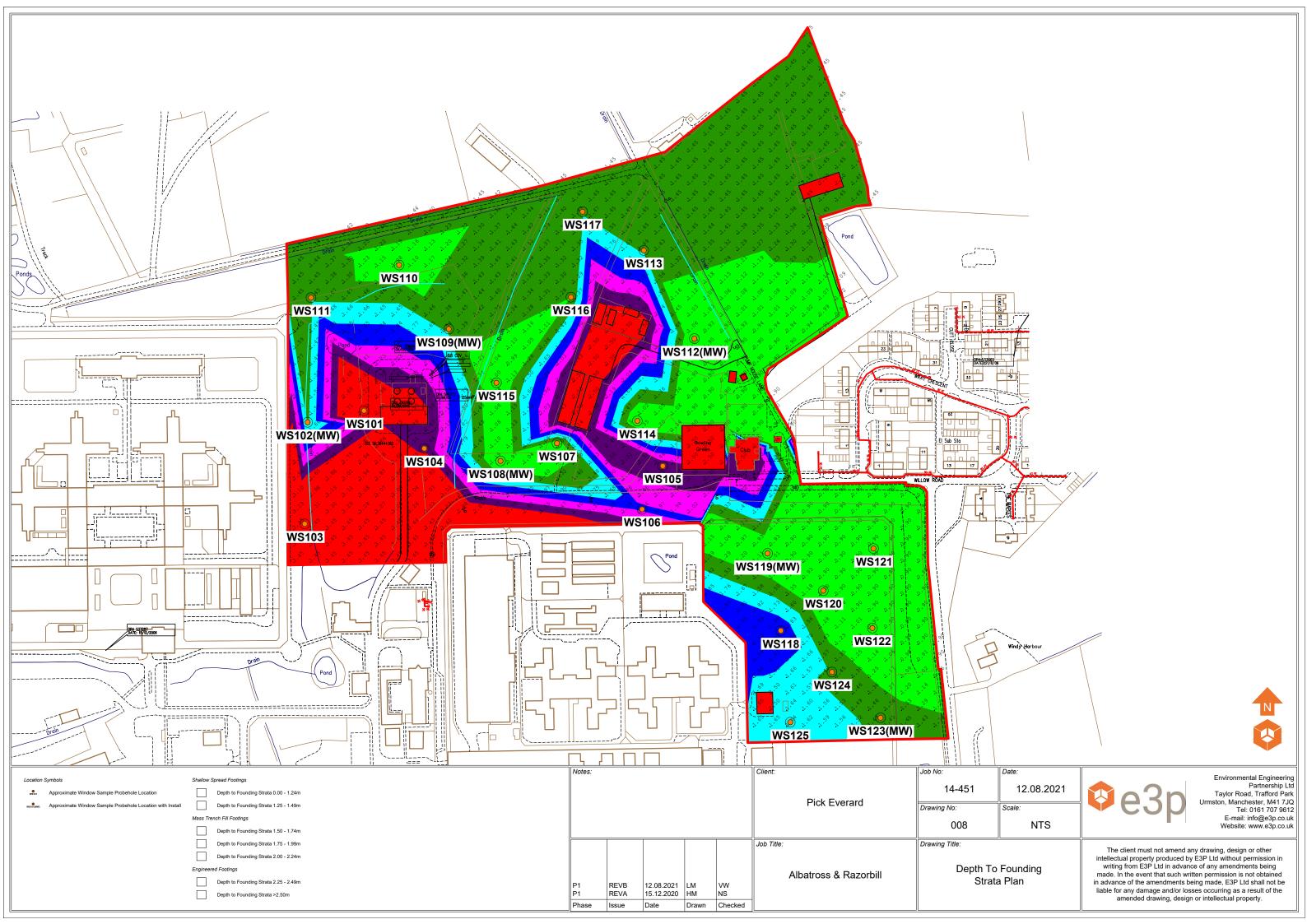

APPENDIX III DRAWINGS

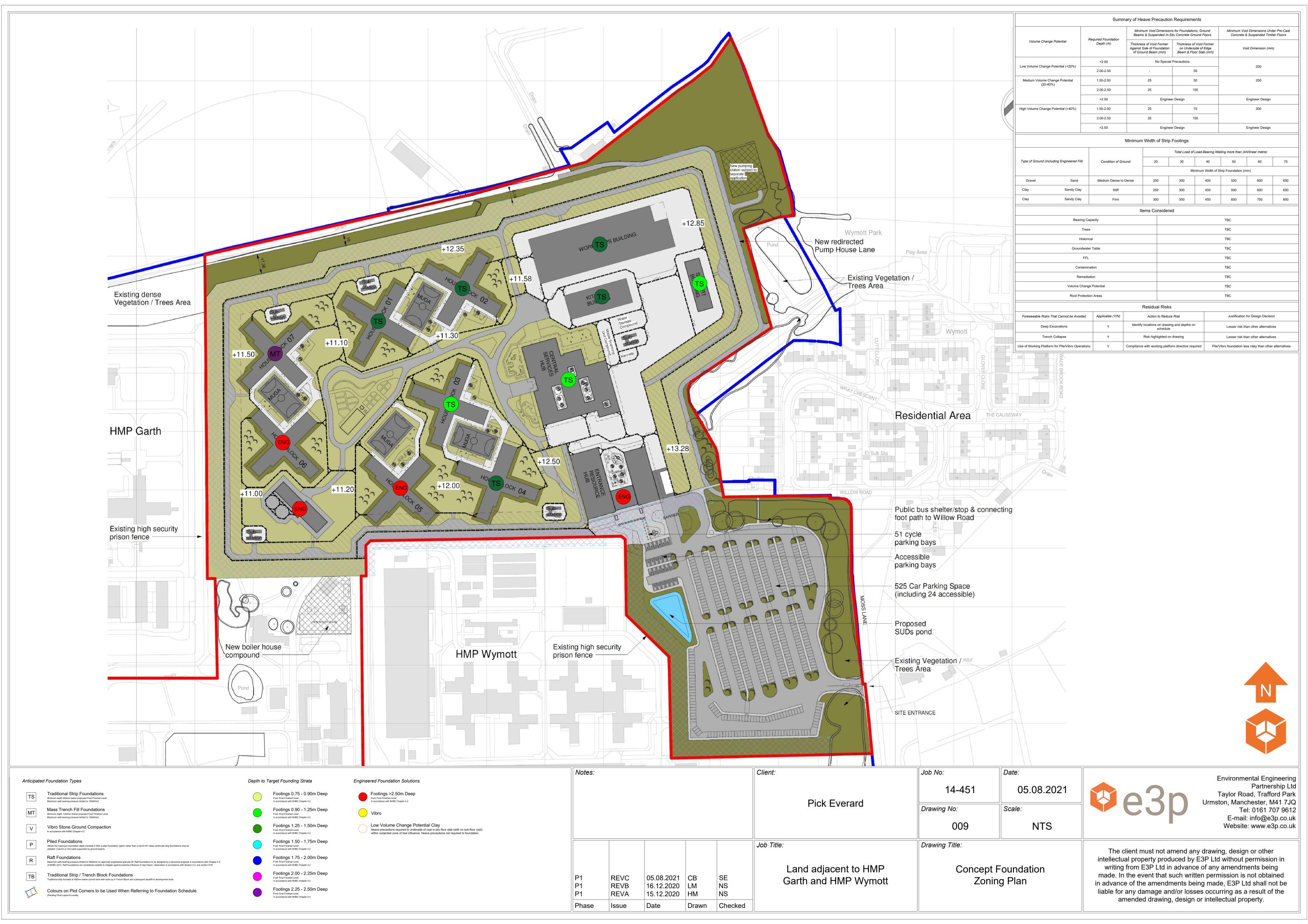


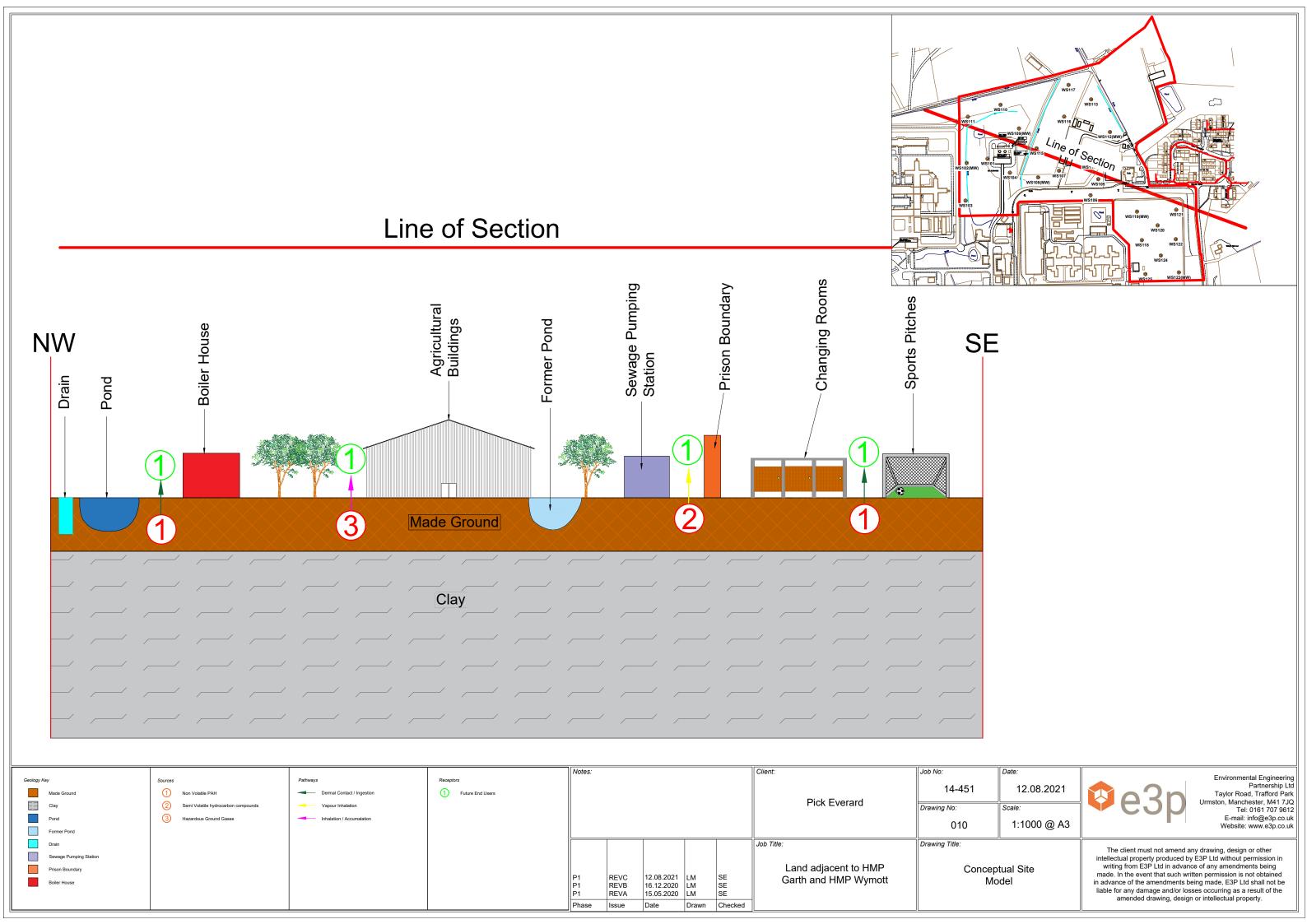

DRAWING 14-451-001 - SITE LOCATION PLAN

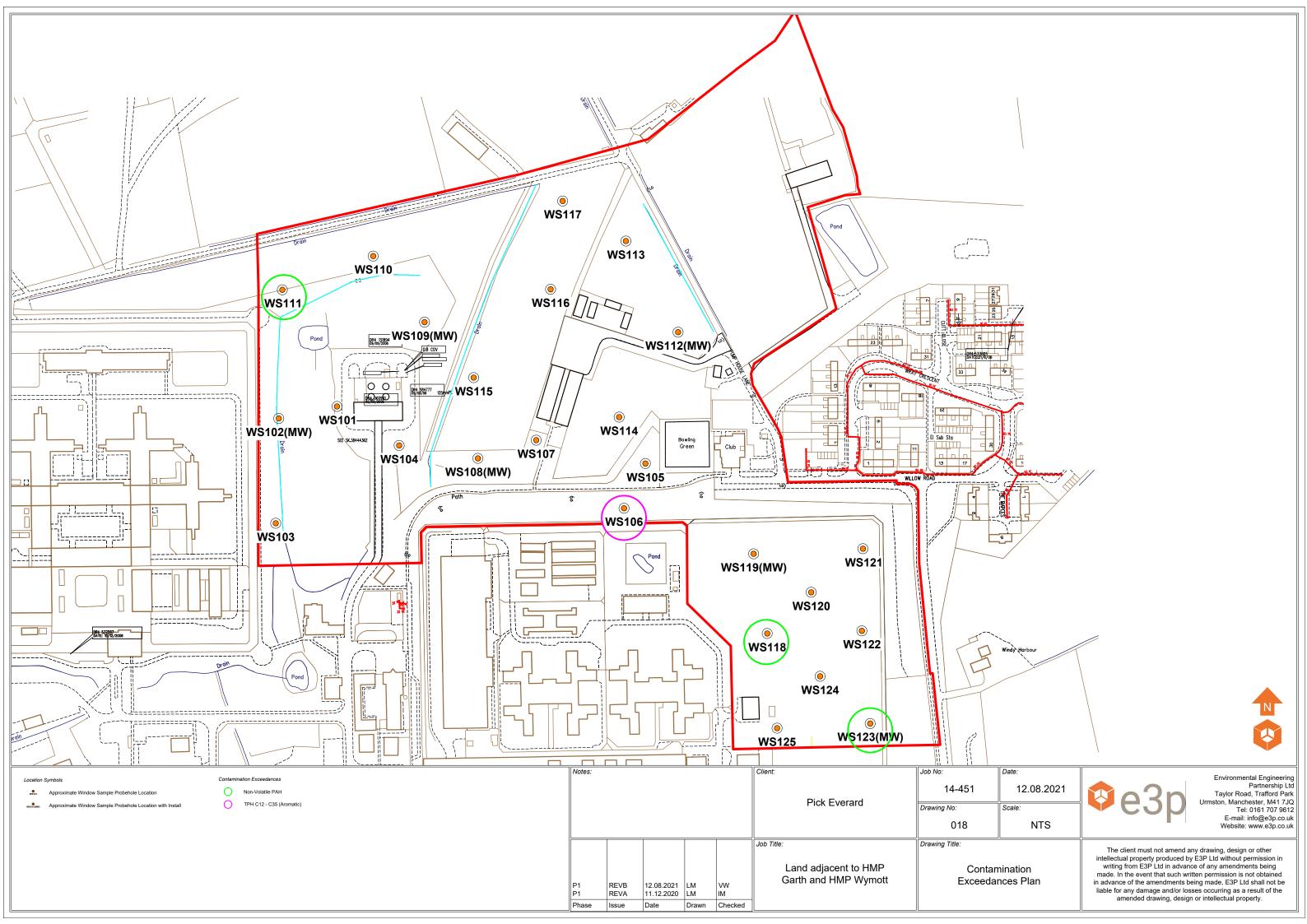












APPENDIX IV PHOTOGRAPHS

Land adjacent to HMP GarthPhase I & II Geoenvironmental Site Assessment August 2021

AGRICULTURAL LAND - CENTRAL SECTOR PLATE 3

Land adjacent to HMP Garth

Phase I & II Geoenvironmental Site Assessment August 2021

PLATE 4 AGRICULTURAL LAND - CENTRAL SECTOR

PLATE 5 LANDSCAPING TO THE NORTH OF THE PRISON

PLATE 6 WOODLAND AREA - NORTH WEST

PLATE 8 WS113 ARISINGS

APPENDIX V E3P EXPLORATORY HOLE LOGS

2 00							Borehole N	0.		
K		93r				Вс	oreh	ole Log	WS101	
					Project No.				Sheet 1 of Hole Type	
Projec	t Name:	Albatros	s & Ra		14451		Co-ords:	350327E - 420807N	WS	
Locati	on:	Leyland					Level:		Scale 1:50	
Client:		Pick Eve	erard				Dates:	29/10/2020	Logged By	
Well	Water	Sample	and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Type	Results 0 (0 for 0mm/0 for 0mm)	(m)	(m)		MADE GROUND: Dark brown silty cla to medium sand with occasional rootle Gravel is fine to medium angular to su mudstone brick and concrete.	yey gravelly fine ts (Topsoil).	1 —
			SPT	N=18 (2,2/4,5,5,4)	1.50			MADE GROUND: Firm brown gravelly clay. Gr fine to medium angular to subangular of brick mudstone and concrete.		2 —
	2.00 SPT NOTE		50 (8,10/50 for 275mm)	2.50			MADE GROUND: Soft brown gravelly fine subangular to subrounded of mud	clay. Gravel is stone and brick.	3 —	
					3.45		***************************************	End of Borehole at 3.45r	n	4 —
										5
										6
										7 —
										8 —
										9 —
										10 —

1. Refused on possible obstructions at 3.45m bgl. 2. Water strike encountered at 2.00m bgl.

ma2n							Borehole No	ο.		
K		231				Вс	reh	ole Log	WS102	2
									Sheet 1 of	
Projec	t Name:	Albatros	s & Ra		Project No. 14451		Co-ords:	350286E - 420800N	Hole Type WS	
Location	on:	Leyland					Level:		Scale 1:50	
Client:		Pick Eve	erard				Dates:	29/10/2020	Logged By I.McQuillar	
Well	Water	Sample	and I	n Situ Testing	Depth	Level	Legend	Stratum Depariation		
vveii	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legena	Stratum Description		
		1.00 2.00 4.00	SPT SPT	N=8 (1,1/2,2,2,2) N=15 (3,4/3,4,4,4) N=26 (6,6/6,7,6,7) 50 (7,11/50 for 275m	0.16 0.60 1.00			MADE GROUND: Dark brown very cla medium sand with frequent rootlets (To MADE GROUND: Dark brown gravelly sand. Gravel is fine to coarse angular of brick concrete and mixed natural lith Dark brown gravelly CLAY. Gravel is fine angular to sub-angular of mudstone. Stiff high strength light brown slightly g Gravel is fine to coarse sub-angular to mudstone. (Very stiff very high strength bgl). End of Borehole at 4.45n	opsoil). fine to coarse to sub-angular hologies. he to coarse travelly CLAY. sub-rounded of h at circa 3.00m	2 3 4 5 6 7 7 8 9 7 7 8 9 7 7 7 7 7 7 7 7 7 7 7 7
Remar	ke									10 -

1. Refused on very stiff clay at 4.45m bgl. 2. Monitoring well installed.

1 00 0								Borehole N	0.	
		93r				Вс	oreh	ole Log	WS103	3
								J	Sheet 1 of	1
Projec	t Name:	Albatros	s & Ra	ZOLDIII	Project No. 14451		Co-ords:	350299E - 420741N	Hole Type WS	•
Location	on:	Leyland					Level:		Scale 1:50	
Client:		Pick Eve	erard				Dates:	29/10/2020	Logged By I.McQuillar	
Well	Water	Sample	and Ir	n Situ Testing	Depth	Level	Legend	Stratum Description		
VVCII	Strikes	Depth (m)	Туре	Results	(m)	(m)	Logona	MADE GROUND: Dark brown silty clay		
		1.00	SPT	N=8 (2,1/1,2,2,3)	0.20 0.50 0.80 1.00			medium sand with frequent rootlets (To MADE GROUND: Dark brown gravelly sand. Gravel is fine to coarse angular to of brick concrete and mixed natural lith Firm brown CLAY Soft brown CLAY Loose dark greyish brown clayey GRA' fine to medium angular to sub-angular	fine to coarse o sub-angular ologies. /EL. Gravel is	1 —
			N=6 (3,1/1,1,2,2)	2.00 2.10			Firm brown gravelly sandy CLAY. Grav medium subangular to angular of muds Firm medium strength reddish brown C	stone. /	2 —	
	3.00 SPT N=14 (3,3/4,3,4,3					Stiff high strength greyish brown grave Gravel is fine to medium sub-angular to of mudstone.	lly CLAY. o sub-rounded	3 -		
	4.0		SPT	N=24 (4,5/5,5,7,7)				Very stiff very high strength greyish bro	wn CLAY.	4 —
		5.00	SPT	N=24 (6,5/6,6,6,6)	5.45			End of Borehole at 5.45n	1	5
										7 —
									8 —	
										9 —
Remar	rks									10 —

Complete.

☆ ∩2n							Borehole N	0.		
	(23 ľ				Вс	reh	ole Log	WS104	
							T		Sheet 1 of	
Project N	lame:	Albatros	s & Ra		Project No. 14451		Co-ords:	350385E - 420780N	Hole Type WS	·
Location	:	Leyland					Level:		Scale	
OI: 1		D: 1 E					D 1	00/40/0000	1:50 Logged By	,
Client:		Pick Eve				T	Dates:	29/10/2020	I.McQuillar	
Well S	Vater trikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
		Depth (m)	Туре	Results	(***)	()		Dark brown clayey silty fine to medium	SAND with	
					0.32			frequent rootlets (Topsoil). Firm medium strength brown slightly gi	ravelly CLAY.	
								Gravel is fine to coarse angular to sub- mudstone.	-angular of	
		1.00	SPT	N=6 (2,3/1,1,2,2)						1 =
		1.00		14-0 (2,0/1,1,2,2)						
]
		2.00	SPT	N=8 (1,1/2,2,2,2)						2 —
]
					2.50			Stiff high strength brown CLAY (Become very high strength at circa 4.00m bgl).	ning very stiff	
		3.00	SPT	N=12 (3,2/3,3,3,3))			, , ,		3 =
				, , , , ,						1
		4.00	SPT	N=19 (4,5/5,5,4,5)					4 —
]
		5.00	SPT	N=26 (5,6/6,6,7,7))		F===			5 —
\$23\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					5.45			End of Borehole at 5.45n	n	1 =
										6 —
										=
										7 📑
										=
										8 —
										=
										9 🚽
										10 —
Remarks										
Complete										

Complete.

200							Borehole N	0.		
K		231				Вс	reh	ole Log	WS10	5
							-		Sheet 1 of	
Projec	t Name:	Albatros	s & Ra	zorbill	Project No. 14451		Co-ords:	350577E - 420755N	Hole Type WS	•
Location	on:	Leyland					Level:		Scale	
Locali	JII.	Leyianu					Level.		1:50	
Client:		Pick Eve	erard				Dates:	29/10/2020	Logged By I.McQuillar	
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
Well	Water Strikes 1.00	Sample Depth (m) 1.00 2.00 4.00	SPT SPT	Results N=5 (1,2/1,1,1,2) N=9 (2,3/2,3,2,2) N=16 (3,3/4,5,4,3) N=20 (4,3/4,5,5,6)	(m) 0.42 0.70 1.00 2.00 2.45 2.55) 3.20	Level (m)	Legend	MADE GROUND: Dark brown silty clafine to medium sand with frequent root Gravel is fine to coarse angular to subbrick, ceramic and mudstone. MADE GROUND: Firm brown slightly is Gravel is fine to medium angular to subceramic. MADE GROUND: Firm brown gravelly fine to coarse angular to subangular of asphalt. Firm medium strength brown gravelly fine subangular to subrounded of mixel lithologies. Stiff high strength reddish brown CLAY Green fine SILT. Stiff reddish brown CLAY Very stiff very high strength reddish brown CLAY Find of Borehole at 4.45r	lets (Topsoil). rounded of gravelly clay. b-angular of clay. Gravel is f ceramic and CLAY. Gravel is d natural	3 3 4 5 5 6 7 7 8 9 9
										10 —

1. Complete. 2. Water strike encountered at 1.00m bgl.

A 2 2 2 2 2							Borehole N	lo.		
		3 31				Вс	oreh	ole Log	WS106	6
									Sheet 1 of	
Projec	t Name:	Albatros	s & Ra	70rniii	Project No.		Co-ords:	350530E - 420729N	Hole Type	•
					14451				WS Scale	
Locati	on:	Leyland					Level:		1:50	
									Logged By	
Client:		Pick Eve	erard				Dates:	29/10/2020	I.McQuilla	
	Water	Sample	and Ir	n Situ Testing	Depth	Level	Ī		•	
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
		1 (/	7.					MADE GROUND: Dark brown slightly		_
					0.22 0.40			silty fine to medium sand with frequent (Topsoil).	rootiets /	1 7
					0.40			MADE GROUND: Firm brown CLAY.		1 3
					0.80			MADE GROUND: Dark brown slightly silty fine to medium sand with frequent	ciayey siightiy rootlets	E
	1.00	1.00	SPT	N=3 (1,1/1,0,1,1)				(Topsoil).	1	\mathbb{L}_{1}
		JF I	14-3 (1,1/1,0,1,1)	1.00			MADE GROUND: Brown gravelly clay. to medium angular to subangular of m	Gravel is fine	∥ ' ∃	
	1.00 SFT N=3 (1,1/1,0,1,1) 2.00 SPT N=7 (2,2/2,1,2,2)						∖ lithologies.		1 1	
			1.50			MADE GROUND: Soft dark brown clay matter and hydrocarbon odour.	with organic			
						MADE GROUND: Very soft dark grey	silty gravelly	1 1		
						clay with occasional rootlets and organ		2 -		
		2.00	011	14-7 (2,2/2,1,2,2)				fibres). Gravel is fine to coarse subang subrounded of ceramic.	Jular to	
								Firm medium strength grey slightly silt	y sandy CLAY.	
								(Stiff high strength at circa 3.00m bgl) high strength at circa 4.00m bgl).	(Very stiff very	
								ingir outeringur at onear 1.00m agry.		1 -
		3.00	SPT	N=11 (3,2/2,3,3,3	,					
		3.00	JF I	14-11 (3,2/2,3,3,3	,					3 —
								·]
										-
										\exists
		4.00	SPT	N=18 (3,5/5,5,4,4	,					$\begin{bmatrix} 1 \end{bmatrix}$
		4.00	JF I	14-10 (3,3/3,3,4,4	'] -		4 =
]
727772					4.45			End of Borehole at 4.45r	n	1 -
										5 —
										"
										6 -
										"
										7 -
										′ ∃
]
										-
										8 =
										-
										9 —
										-
										4
										7
										10 =
1			1 1		1	1		1		10 —

1. Complete. 2. Water strike encountered at 1.50m bgl.

2 0							Borehole N	0.		
K		231				Вс	oreho	ole Log	WS107	7
									Sheet 1 of	
Projec	t Name:	Albatros	s & Ra		Project No. 14451		Co-ords:	350494E - 420788N	Hole Type WS	;
Location	on:	Leyland					Level:		Scale	
Client:		Pick Eve	arard				Dates:	29/10/2020	1:50 Logged By	
Ollotta				. City Taating		Ι	Bates.	20/10/2020	I.McQuilla	n
Well	Water Strikes			n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
	Surkes	1.00 2.00 4.00	SPT SPT	N=8 (1,2/2,2,2,2) N=11 (3,2/2,3,3,3) N=24 (4,5/6,6,6,6) N=27 (6,7/7,6,6,8)	0.60			MADE GROUND: Dark brown slightly silty gravelly fine to medium sand with rootlets (Topsoil) Gravel is fine to medi sub-angular of ceramic and brick. Very stiff slightly sandy brown CLAY. Stiff high strength brown CLAY. (Very strength at circa 3.00m bgl).	clayey slightly frequent um angular to	3 3 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Remar										10 —

Complete.

\triangle o 2 n							Borehole N	0.		
K		23 1				Вс	preh	ole Log	WS108	3
					D : (N		1		Sheet 1 of	
Projec	t Name:	Albatros	s & Ra	zorbill	Project No. 14451		Co-ords:	350454E - 420760N	Hole Type WS	;
Locati	on.	Leyland					Level:		Scale	
Locati							20101.		1:50 Logged By	,
Client:		Pick Eve	erard				Dates:	29/10/2020	I.McQuilla	
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
Well	Strikes	Depth (m) 1.00 2.00 4.00	SPT SPT	Results N=7 (2,1/2,2,2,1) N=14 (3,2/3,4,4,3) N=29 (3,5/7,7,8,7) N=34 (6,8/9,9,8,8)	(m) 0.30	(m)	Legend A Company of the Company of	Stratum Description Dark brown slightly clayey slightly silty SAND with frequent rootlets (Topsoil). Firm medium strength gravelly brown of fine to medium sub-angular to sub-rour mudstone. (Stiff high strength at circa 2 (Very stiff very high strength at circa 3.1) End of Borehole at 4.45n	fine to medium CLAY. Gravel is nded of 2.00m bgl).	3 3 4 5 5 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Pemar										10 —

1. Complete. 2. Monitoring well installed.

1 2 2 2 2 2									Borehole No	0.
K		231				Вс	oreh	ole Log	WS109	•
									Sheet 1 of	
Projec	t Name:	Albatros	ss & Ra		Project No. 14451		Co-ords:	350392E - 420869N	Hole Type WS	!
Locati	on:	Leyland					Level:		Scale 1:50	
Client:		Pick Eve	erard				Dates:	29/10/2020	Logged By I.McQuillar	
Well	Water	Sample	and li	n Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m)	(m)		MADE GROUND: Dark brown slightly	silty gravelly	
					0.50			fine to medium sand with frequent root Gravel is fine to coarse angular to sub- ceramic and brick.	lets (Topsoil). ∙angular of	
					0.50 0.80			MADE GROUND: Firm dark greyish br CLAY. Gravel is fine to coarse subangu	own gravelly	E
		1.00	SPT	N=11 (2,3/3,2,3,3)				∖ of brick and ceramic. ∖ Firm dark grevish brown CLAY.		1 -
								Stiff high strength reddish brown slight CLAY. Gravel is fine subangular to sub	rounded of	
	2.00 SPT N=16 (3,4/4,4,						mudstone. (Very stiff high strength at c	irca 3.00m bgl).		
	2.00 SPT N=16 (3,4/4,4				,					2 -
	2.00 SPT N=16 (3,4/4,4									
	2.00 SPT N=16 (3,4/4,4									1
				N 00 (0 0/5 0 5 0)]
		3.00	SPT	N=22 (2,3/5,6,5,6)	'					3 —
					3.50			Very stiff very high strength reddish bro	own slightly	
								gravelly CLAY. Gravel is medium to cossubrounded to rounded of mudstone.	arse]
		4.00	SPT	N=19 (5,5/5,4,5,5)						4 —
					4.45			End of Borehole at 4.45n	n	
										5 =
										F
										6 -
										1
										7 —
										1
										8 —
										=
										9 —
										10 -
Remar Comp								Фe3	3p	

Borehole Log Project Name: Albatross & Razorbill Location: Leyland Project No. 14451 Co-ords: 350345E - 420904N WS Level: Scale 1:50 Client: Pick Everard Dates: 29/10/2020 WS110 Sheet 1 of 1 Hole Type WS Scale 1:50	0	
Project Name: Albatross & Razorbill Project No. 14451 Co-ords: 350345E - 420904N WS Location: Leyland Level: Scale 1:50 College: 29/10/2020 Logged By		
14451 Co-ords: 350345E - 420904N WS		
Location: Leyland Level: Scale 1:50 Client: Pick Everand Dates: 29/10/2020 Logged By	е	
Client: Bick Everard Date: 29/10/2020 Logged By		
I.McQuillan		
Well Water Sample and In Situ Testing Depth Level Strikes Depth (m) Type Results Company Results Resul		
MADE GROUND. Dark bown slightly growelly slightly clays yightly life to in medium subtrounded to anyther of corner and brick. 1.00 SPT N=13 (2,2/2,3,4,4) 150 2.00 SPT N=13 (3,4/3,3,4,3) 2.00 SPT N=22 (4,5/5,6,5,5) 3.00 SPT N=21 (5,4/4,5,6,6) 4.45 End of Borehole at 4,45m	1 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	

1. Complete. 2. Water strike encountered at 1.50m bgl.

2 0							Borehole N	0.		
4		231				Вс	oreh	ole Log	WS111	ı
									Sheet 1 of	
Proje	ct Name:	Albatros	s & Ra	ZOTNIII	Project No. 14451		Co-ords:	350291E - 350291N	Hole Type WS	•
Locat	ion:	Leyland		,			Level:		Scale 1:50	
Client		Pick Eve	erard				Dates:	29/10/2020	Logged By	
	Water	Sample	and I	n Situ Testing	Depth	Level				
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
		1.00 2.00 3.00 4.00	SPT SPT	N=12 (3,3/3,3,3,3) N=13 (3,3/4,3,3,3) N=25 (4,6/6,7,6,6) N=25 (6,5/5,7,6,7)	0.50 0.70 1.00			MADE GROUND. Dark brown slightly silty gravelly fine to medium sand with rootlets (topsoil) (Topsoil). Gravel is fin subangular to angular of brick. Very stiff brown CLAY. Brown gravelly fine to medium SAND. coarse sub-angular to sub-rounded of Stiff high strength reddish brown CLAY high strength at circa 3.00m bgl). End of Borehole at 4.45n	Gravel is fine to mudstone. (Very stiff very	3 3 4 5 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Rema	rks									10 -

Complete.

		201	_			Borehole N				
	-	23I				RC	oren	ole Log	WS112	
Project	t Name:	Albatros	ss & Ra		Project No.		Co-ords:	350617E - 420867N	Sheet 1 of Hole Type	
				2015111	14451				WS Scale	
Location	on:	Leyland					Level:		1:50	
Client:		Pick Ev	erard				Dates:	29/10/2020	Logged B I.McQuilla	
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	Ollikes	Depth (m)	Туре	Results	(111)	(111)		Dark brown slightly clayey slightly silty	fine to medium	-
					0.30			SAND with frequent rootlets (Topsoil) Stiff reddish brown and grey mottled C	LAY	-
										-
		1.00	SPT	N=8 (2,3/2,2,2,2)	1.00			Stiff high strength reddish brown CLAY	,	1 -
										-
										-
		2.00	SPT	N=12 (3,4/3,3,3,3	,					2 -
				(2, 22,2,2,2	,					-
										-
					,					-
		3.00	SPT	N=17 (4,4/4,4,4,5	3.00			Stiff high strength reddish brown CLAY high strength at circa 4.00m bgl).	. (Very stiff very	3 -
										-
		4.00	SPT	N=20 (5,5/4,5,5,6)					4 -
					4.45			5 1 6 2 1 1 1 1 1 1 1		_ =
								End of Borehole at 4.45r	n	=
										5 -
										-
										6 -
										-
										-
										7 -
										-
										8 -
										-
										=
										9 —
										-
										-
										10 —
Remar	ke									10 —
Compl									æe.î	3n

				Borehole No.					
()	231				Вс	oreh	ole Log	WS113	
						Г		Sheet 1 of	
Project Name:	Albatro	ss & Ra	zorbill	Project No. 14451		Co-ords:	350587E - 420950N	Hole Type WS	
₋ocation:	Leyland	I				Level:		Scale 1:50	
Client:	Pick Ev	erard				Dates:	29/10/2020	Logged By I.McQuillan	
Well Water	Sampl	e and lı	n Situ Testing	Depth	Level	Legend	Stratum Description	·	
Strikes	1.00 2.00 3.00	SPT SPT	N=9 (2,2/2,3,2,2) N=8 (1,3/2,2,2,2) N=23 (4,6/6,6,5,6) N=22 (5,4/6,5,5,6)	1.20	(m)		Dark brown slightly clayey slightly silty medium SAND with frequent rootlets (is fine to medium sub-angular to sub-romixed natural lithologies. Firm brown very sandy very gravelly C fine to medium subrounded to rounded Firm reddish brown slightly sandy CLA Brown very clayey very gravelly fine to SAND. Gravel is fine to medium subar subrounded of mudstone. Stiff high strength brown gravelly CLA medium to coarse subrounded to subar mudstone. Stiff high strength slightly gravelly brown CLAY. Gravel is fine to medium sub-arrounded of mudstone. (Very stiff very hours a 3.00m bgl).	gravelly fine to Topsoil). Gravel ounded of ELAY. Gravel is d of mudstone. Yr or medium ingular to from gravelly ingular to sub-ingly strength at	1
									6 —

2 00									Borehole N	0.
		231				Вс	oreh	ole Log	WS114	۱
									Sheet 1 of	
Projec	t Name:	Albatros	s & Ra		Project No. 14451		Co-ords:	350553E - 420797N	Hole Type WS	;
Location	on:	Leyland					Level:		Scale 1:50	
Client:		Pick Eve	erard				Dates:	29/10/2020	Logged By	
				- City Taating		Ι	Dates.	20,10,2020	I.McQuilla	n
Well	Water Strikes			n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
	Strikes	1.00 2.00 3.00 4.00	SPT SPT	N=9 (2,1/2,2,2,3) N=18 (3,2/5,5,4,4) N=23 (4,5/6,6,5,6) N=25 (6,7/7,6,6,6)	0.23			Dark brown slightly clayey slightly silty SAND with (Topsoil) with frequent root Stiff high strength brown CLAY (Very s at circa 2.00m bgl). Stiff slightly gravelly brown gravelly CL fine to medium sub-rounded to rounded to rounded to medium sub-rounded to rounded to stiff very high strength brown CLA for Borehole at 4.45m.	fine to medium lets. tiff high strength AY. Gravel is d of mudstone.	1 1
Remar										10 —

Complete.

· ·	©e3p					Вс	oreh	ole Log	Borehole N WS118	5
Projec	t Name:	Albatros	s & Ra		Project No. 14451		Co-ords:	350443E - 420830N	Sheet 1 of Hole Type WS	
Locati	on:	Leyland					Level:		Scale 1:50	
Client:		Pick Eve	erard				Dates:	29/10/2020	Logged By	
Well	Water	Sample	and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	·		
Well	Strikes	2.00 3.00	SPT SPT	Results N=12 (3,3/2,2,4,4 N=24 (5,6/6,5,6,7 50 (8,10/50 for 275mm)		(m)		Dark brown slightly clayey slightly silty SAND with frequent rootlets (Topsoil) Light brown fine to medium gravelly fir SAND. Gravel is fine to medium sub-arounded of mudstone. Medium dense grey very clayey slightly medium SAND. Very stiff very high strength brown grage Gravel is fine angular to subangular of the su	refine to medium me to medium ngular to sub- y silty fine to velly CLAY. r mudstone.	3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -
Remai	ks									8

Refused on very stiff clay at 3.45m bgl.

Project Name: Albatross & Razorbill Project No. 14451 Co-ords: 350505E - 420896N	WS116 Sheet 1 of 1 Hole Type
Project Name: Albatross & Razorbili 14451 Co-ords: 350505E - 420896N	
Project Name: Albatross & Razorbiii 14451 Co-ords: 350505E - 420896N	l Hole Type
	ws
Location: Leyland Level:	Scale 1:50
Client: Pick Everard Dates: 29/10/2020	Logged By I.McQuillan
Well Strikes Sample and In Situ Testing Depth Level Legend Stratum Depth Level Legend	
Strikes Depth (m) Type Results (m) (m)	
0.28	requent rootlets (Topsoil). angular to subrounded of y fine to medium SAND. is fine to medium angular ural lithologies. ghtly gravelly reddish to coarse angular to sub-
	9 –
	-
	10 —
Remarks Complete.	©e3n

		- 0-							Borehole N	0.
K		3 31				Вс	oreh	ole Log	WS117	7
					Project No.				Sheet 1 of Hole Type	
Projec	t Name:	Albatros	s & Ra		14451		Co-ords:	350518E - 420996N	WS	,
Locati	on:	Leyland					Level:		Scale	
									1:50 Logged B	y
Client:		Pick Eve	erard				Dates:	29/10/2020	I.McQuilla	
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	Stilkes	Depth (m)	Туре	Results	(111)	(111)		MADE GROUND: Dark brown slightly	clayey slightly	
					0.30			silty fine to medium sand with frequent (Topsoil)	rootlets	=
								MADE GROUND: Brown very clayey v to medium sand. Gravel is fine to coars	se angular to	
		1.00	SPT	N=0 (4.4/4.0.3.E)	1.00			sub-rounded of brick and mixed natura		
	1.00	1.00	SPI	N=9 (1,1/1,0,3,5)	1.00			Stiff high strength slightly gravelly redd CLAY. Gravel is fine to medium angula	r to sub-angular	1 1 -
								of mudstone. (Very stiff very high stren 2.00m bgl).	gth at circa	=
		2.00	SPT	N=26 (5,4/6,7,7,6)						2 -
		3.00	SPT	50 (6,11/50 for 70mn	٦)					3 —
					3.45			End of Borehole at 3.45n		
								End of Boreflole at 3.43h	1	
										4 -
										=
										5 —
]
										6 —
										ਁ
]
										7 -
										8 —
										=
										9 🚽
										=
										10 —

1. Refused on very stiff clay at 3.45m bgl. 2. Water strike encountered at 1.00m bgl.

1 00 0					Borehole No.					
K		3 31				Вс	oreh	ole Log	WS118	3
					D ' (N				Sheet 1 of	
Projec	t Name:	Albatros	s & Ra		Project No. 14451		Co-ords:	350664E - 420619N	Hole Type WS	,
Locati	on:	Leyland					Level:		Scale	
Locati	OII.	Loyland					LCVCI.		1:50	
Client:		Pick Eve	erard				Dates:	29/10/2020	Logged By M. Jackson	
Well	Water Strikes	Sample Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		Doput (III)	1900	reduid				MADE GROUND: Firm light brown gra rootlets. The gravel is fine subrounded	velly clay with of sandstone.	=
					0.40 0.60			(Topsoil) MADE GROUND: Firm brown very gra Gravel is fine to coarse sub-angular to	velly clay. sub-rounded of	
		1.00	SPT	N=4 (1,0/0,1,1,2)				sandstone, mudstone and brick. MADE GROUND: Firm slightly gravelly rootlets and strong organic odour. The	y black clay with	1 -
	1.00			(,,,,,,,				sub-angular of brick.	graver is lille	
					1.50			Stiff high strength brown gravelly CLA to medium sub-rounded of sandstone	and mudstone.	
		2.00	SPT	N=10 (2,2/3,2,2,3)			(Very stiff very high strength at circa 4.	00m bgl).	2 =
		3.00	SPT	N=16 (4,3/4,4,4,4)					3 —
		4.00	SPT	N=22 (4,5/5,5,6,6	,					4 —
		4.00	JF1	14-22 (4,3/3,3,0,0	,					4 -
					4.45		:	End of Borehole at 4.45r	n	
										5 —
										6 -
										=
										7 —
										8 —
										9 -
										10 —

1. Complete. 2. Water strike encountered at 1.00m bgl.

Projec		e 3				Bo	oreho	ole Log	WS119)	
Projec		Alhatros								Sheet 1 of 1	
Projec							1				
					Project No. 14451		Co-ords:	350641E - 420701N	Hole Type WS		
Locati							Level:		Scale		
									1:50 Logged By	,	
Client:		Pick Eve	erard				Dates:	29/10/2020	M. Jacksor		
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description			
Well	Water Strikes 1	Sample Depth (m) 1.00 2.00 4.00	SPT SPT SPT	Results N=8 (2,2/2,2,2,2) N=10 (2,3/3,3,2,2) N=14 (3,4/3,3,4,4) N=20 (5,5/5,5,5,5)	(m) 0.30	Level (m)	Legend	Stiff high strength orangish brown mott gravelly CLAY with mudstone cobble a Gravel is fine subrounded to rounded r sandstone. Stiff high strength orangish brown mott gravelly CLAY. The gravel is fine to me rounded to rounded mudstone and san stiff very high strength at circa 4.00m b	velly clay with (Topsoil) led grey slightly t 1.3 m bgl. nudstone and led grey slightly dium sub dstone. (Very gl).	1 2 3 3 4 5 7 7 8 8 9	
										10 —	

1. Complete 2. Response zone 0.5-4.0 m bgl 3. Water strike encountered at 3.00m bgl.

100n					Borehole No.					0.
		23 1				Вс	oreh	ole Log	WS120)
							1		Sheet 1 of	
Project	Name:	Albatros	s & Ra		Project No. 14451		Co-ords:	350696E - 420672N	Hole Type WS	•
Locatio	n:	Leyland					Level:		Scale	
Oli t		Diala Fa					D-4	00/40/0000	1:50 Logged By	y
Client:		Pick Eve					Dates:	29/10/2020	M. Jackson	n
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1	
		Depth (m)	Туре	Results				Firm dark brown to black CLAY with ro	otlets. (Topsoil)	_
		1.00 2.00 3.00 4.00	SPT SPT	N=9 (2,2/3,2,2,2) N=14 (3,3/3,4,4,3 N=18 (4,4/4,5,4,5 N=18 (4,5/5,4,4,5				Firm dark brown to black CLAY with ro Stiff high strength orangish brown mot gravelly CLAY. The gravel is fine sub ro rounded mudstone and sandstone. (Ve high strength at circa 3.00m bgl).	tled grey slightly ounded to ery stiff very	1 — — — — — — — — — — — — — — — — — — —
										9 -
										-
										10 —
Remark										

1. Complete

2 00								Borehole N	О.	
K		3 31				Вс	reh	ole Log	WS121	1
							T		Sheet 1 of	
Projec	t Name:	Albatros	s & Ra		Project No. 14451		Co-ords:	350764E - 420703N	Hole Type WS)
Locati	on:	Leyland					Level:		Scale 1:50	
Client:		Pick Eve	erard				Dates:	29/10/2020	Logged By	
	Water	Sample	and li	n Situ Testing	Depth	Level			M. Jackson	n
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
		2.00	SPT	N=10 (2,2/3,3,2,2 N=15 (3,3/4,4,4,3				Soft to firm slightly gravelly CLAY with is fine to medium sub angular of sands Stiff high strength orangish brown mott gravelly CLAY. The gravel is fine sub rounded of mudstone and sandstone.	tone. (Topsoil)	1
	3.00	3.00	SPT	N=18 (4,4/4,5,5,4	3.00			Very stiff very high strength orangish b sandy CLAY. Medium dense orangish brown with bla		3 —
		4.00	SPT	N=13 (4,3/3,3,4,3	4.45			SAND.		4 —
								End of Borehole at 4.45n	n	5 —
										6 —
										7 —
										8 —
										9 —
										10 —

1. Complete. 2. Water strike encountered at 3.00m bgl.

(e3p				Вс	reho	ole Log	WS122 Sheet 1 of 1	
Project Name:	Albatros	s & Raz	zorniii i	oject No. 451		Co-ords:	350759E - 420629N	Hole Type WS)
Location:	Leyland		'			Level:		Scale 1:50	
Client:	Pick Eve	erard				Dates:	29/10/2020	Logged By M. Jackson	
Well Water Strikes			Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
Ottikes	Depth (m)	Туре	Results	0.10	(111)		MADE GROUND: Soft to firm slightly with rootlets. The gravel is fine to med	gravelly clay	
	1.00	SPT	N=11 (1,1/2,2,3,4)	0.30			of sandstone. (Topsoil) MADE GROUND: Brown and black vigravel. Gravel is fine to coarse angula of sandstone, concrete and brick. Firm black to dark brown slightly grav rootlets. Gravel is fine subrounded of Stiff high strength orangish brown mo gravelly CLAY. Gravel is fine subroun of mudstone and sandstone.	ery sandy clayey ar to sub-angular elly CLAY with sandstone. ttled grey slightly	1 -
	2.00	SPT	N=12 (4,3/3,3,3,3)						2 -
	4.00	SPT	N=12 (3,3/3,3,3,3) N=19 (4,5/5,5,4,5)	3.00 3.20			Stiff orangish brown very sandy CLAY Stiff high strength orangish brown mo gravelly CLAY. The gravel is fine sub rounded of mudstone and sandstone. high strength at circa 4.00m bgl).	ttled grey slightly rounded to	3 -
				4.45			End of Borehole at 4.45	m	6 - 7 - 9 -

1. Complete

☆ ∩ 2 n									Borehole No	0.
		23 1				Вс	oreho	ole Log	WS123	3
									Sheet 1 of	
Projec	t Name:	Albatros	s & Ra	zorbill	Project No. 14451		Co-ords:	350770E - 420535N	Hole Type WS	
Location	on:	Leyland					Level:		Scale 1:50	
Client:		Pick Eve	erard				Dates:	29/10/2020	Logged By M. Jacksor	
Well	Water	Sample	and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
vveii	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend			
	Strikes	Depth (m) 1.00 2.00 4.00	SPT SPT	N=8 (1,1/2,2,2,2 N=12 (2,2/3,3,3,3 N=21 (3,3/4,6,6,5 N=18 (4,5/5,5,4,4	0.15 0.30	(m)		MADE GROUND: Soft to firm slightly gwith rootlets. Gravel is fine to medium sandstone. (Topsoil) MADE GROUND: Black very sandy as Gravel is fine to coarse angular to subsandstone and limestone. Stiff high strength orangish brown mott gravelly CLAY. The gravel is fine sub rounded mudstone and sandstone. (Vehigh strength at circa 3.00m bgl).	hy gravelangular of led grey slightly bunded to ery stiff very	1 2 3 4 5 5 7 7 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
										9 -
Pemar										10 —

1. Complete 2. Response zone 1.0-4.0 m bgl

		e3r				Вс	reh	ole Log	Borehole N WS124	
Projec	t Name:	Albatros	s & Ra	ZORDIII	Project No.		Co-ords:	350728E - 420571N	Sheet 1 of Hole Type WS	
Locati	on:	Leyland			14451		Level:		Scale	
Client:		Pick Eve	erard				Dates:	29/10/2020	1:50 Logged By M. Jackson	
Well	Water	Sample	and I	n Situ Testing	Depth	Level	Legend	Stratum Description	IVI. Jackson	
	Strikes	Depth (m)	Type	Results N=7 (2,1/1,2,2,2)	0.30 0.35	(m)		MADE GROUND: Yellowish brown clay sand with rootlets. MADE GROUND: Black very sandy as Gravel is fine to coarse angular to subsandstone and limestone. Firm medium strength orangish brown grey slightly gravelly CLAY. The gravel rounded to rounded mudstone and san high strength at circa 2.00m bgl) (Very strength at circa 4.00m bgl).	ny gravel. angular of with mottled is fine sub dstone. (Stiff	1 —
		2.00	SPT	N=11 (2,3/3,3,2,3						2 -
	3.50	4.00	SPT	N=14 (3,3/3,4,3,4 N=22 (4,5/5,5,6,6)					3
787778					4.45			End of Borehole at 4.45m		5 —
										6 —
										7
										8 -
										9 1 1 1 1 1 1 1 1 1
										10

1. Complete. 2. Water strike encountered at 3.50m bgl.

	<u> </u>				Borehole No.				
₩e3p				WS125					
				T	ole Log	Sheet 1 of 1			
Project Name: Albatross & Razorbill		Project No. 14451		Co-ords:	350675E - 420536N	Hole Type WS			
Location: Leyland				Level:		Scale			
·		•						1:50 Logged B	y
Client:	Pick Everard					Dates:	29/10/2020	M. Jackso	
Well Water Strikes		ole and In Situ Testing		Depth (m)	Level (m)	Legend	Stratum Description	1	
Strikes	1.00 2.00 4.00	SPT SPT	N=9 (2,2/2,2,3,2) N=11 (3,3/2,3,3,3) N=23 (4,4/5,6,6,6) N=26 (6,7/6,6,7,7)	0.05 0.90 1.20			MADE GROUND: Soft to firm slightly of with rootlets. The gravel is fine to med of sandstone. (Topsoil) MADE GROUND: Firm dark brown gragravel is fine to coarse angular to subsandstone, concrete and brick. MADE GROUND: Stiff dark brown venclay. Gravel is fine to coarse angular to of sandstone, concrete and brick. Stiff high strength orangish brown mot gravelly CLAY. The gravel is fine sub rounded of mudstone and sandstone. high strength at circa 3.00m bgl).	gravelly clay ium sub angular avelly clay. The crounded of y gravelly ashy o sub-rounded tled grey slightly ounded to (Very stiff very	1
Remarks									

1. Complete

APPENDIX VI CHEMICAL TESTING RESULTS

Stuart Ellis

e3p

Taylor Road Urmston Manchester M41 7JQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

e: sellis@e3p.co.uk

Analytical Report Number: 20-39132

Project / Site name: Albatross Samples received on: 02/11/2020

Your job number: Samples instructed on/ 03/11/2020

Analysis started on:

Your order number: 14 451 SE G Analysis completed by: 09/11/2020

Report issued on: **Report Issue Number:** 09/11/2020

Samples Analysed: 2 leachate samples - 8 soil samples

Signed: M. Cherwinska

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1671277	1671278	1671279	1671280
Sample Reference					WS101	WS102	WS104
Sample Number					None Supplied	None Supplied	None Supplied
Depth (m)					2.30	0.10	0.10
Date Sampled					29/10/2020	29/10/2020	29/10/2020
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter	_	Lir de	St at So				
(Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	22	27	20	19
Total mass of sample received	kg	0.001	NONE	0.4	0.4	0.5	0.4
			•				
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	-	Not-detected
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	-	7.7	-	-
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	-	440	-	-
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	-	0.036	-	-
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	-	72	-	-
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	-	35.9	-	-
Sulphide	mg/kg	1	MCERTS	-	81	-	-
Total Sulphur	mg/kg	50	MCERTS	-	1400	-	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	4.6	-	-
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	-	-
Consideration to the constant of the constant		•	•				
Speciated PAHs Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	_	_	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	0.24	-	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	0.15	-	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	1.6	-	-	0.44
Anthracene	mg/kg	0.05	MCERTS	0.4	-	-	0.12
Fluoranthene	mg/kg	0.05	MCERTS	2.2	-	-	1.2
Pyrene	mg/kg	0.05	MCERTS	2	-	-	1.1
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.2	-	-	0.8
Chrysene	mg/kg	0.05	MCERTS	0.81	-	-	0.57
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.1	-	-	0.9
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.33	-	-	0.47
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.9	-	-	0.79
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.45	-	-	0.49
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.11	-	-	0.12
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.51	-	-	0.56
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	12	-	-	7.5
20000000 TOWN ELTT 10 171110	mg/kg	5.0	LICERTS	14			7.5

Lab Sample Number				1671277	1671278	1671279	1671280
Sample Reference	WS101	WS101	WS102	WS104			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.10	2.30	0.10	0.10			
Date Sampled	29/10/2020	29/10/2020	29/10/2020	29/10/2020			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14	16	6.9	15
Barium (aqua regia extractable)	mg/kg	1	MCERTS	120	-	82	130
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.3	-	1.1	1.2
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	-	0.8	0.9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	33	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	35	29	23	50
Lead (aqua regia extractable)	mg/kg	1	MCERTS	51	15	15	86
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	31	38	44	37
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	42	-	41	43
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	95	65	64	190
Petroleum Hydrocarbons							
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	-	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	-	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	-	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	15	< 1.0	-	10
TPH (C21 - C35)	mg/kg	1	MCERTS	39	< 1.0	-	37
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	< 10	-	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	55	< 10	-	49

Lab Sample Number				1671277	1671278	1671279	1671280
Sample Reference	WS101	WS101	WS102	WS104			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.10	2.30	0.10	0.10			
Date Sampled	29/10/2020	29/10/2020	29/10/2020	29/10/2020			
Time Taken					None Supplied	None Supplied	None Supplied
Analytical Parameter	c	de Lir	St ti S	None Supplied			
(Soil Analysis)	Units	Limit of detecti	Accredi tation Status				
` ' '	•	Ei of	s S				
VOCs			100 17025				
Chloromethane	μg/kg	1	ISO 17025	-	-	-	-
Chloroethane Bromomethane	μg/kg	1	NONE	-	-	-	-
	μg/kg	1	ISO 17025	-		_	-
Vinyl Chloride Trichlorofluoromethane	μg/kg		NONE	-	-	_	-
1,1-Dichloroethene	μg/kg μg/kg	1	NONE NONE	-	<u>-</u>	<u>-</u>	-
1,1,2-Trichloro 1,2,2-Trifluoroethane		1	ISO 17025	-	_		-
Cis-1,2-dichloroethene	μg/kg μg/kg	1	MCERTS	-			
MTBE (Methyl Tertiary Butyl Ether)	μg/kg μg/kg	1	MCERTS	-	-	-	-
1,1-Dichloroethane	μg/kg μg/kg	1	MCERTS	-	-	-	-
2,2-Dichloropropane	μg/kg μg/kg	1	MCERTS	-	_	_	-
Trichloromethane	μg/kg	1	MCERTS	-	-	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	-	_	-
1,2-Dichloroethane	μg/kg	1	MCERTS	-	-	-	-
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-	-	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	-	-
Benzene	μg/kg	1	MCERTS	-	-	-	-
Tetrachloromethane	μg/kg	1	MCERTS	-	-	-	-
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-
Trichloroethene	μg/kg	1	MCERTS	-	-	-	-
Dibromomethane	μg/kg	1	MCERTS	-	-	-	-
Bromodichloromethane	μg/kg	1	MCERTS	-	-	-	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	•	-	-
Toluene	μg/kg	1	MCERTS	-	ı	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-	-	-
Dibromochloromethane	μg/kg	1	ISO 17025	-	-	-	-
Tetrachloroethene	μg/kg	1	NONE	-	-	-	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-	-	-
Chlorobenzene	μg/kg	1	MCERTS	-	-	-	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-
p & m-Xylene	μg/kg	1	MCERTS	-	-	-	-
Styrene	μg/kg 	1	MCERTS	-	-	-	-
Tribromomethane	μg/kg 	1	NONE	-	-	-	-
o-Xylene	μg/kg	1	MCERTS	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-
Isopropylbenzene	μg/kg	1	MCERTS	-	-	-	-
Bromobenzene	μg/kg	1	MCERTS ISO 17025	-	-	-	-
n-Propylbenzene	μg/kg	1		-	-	-	-
2-Chlorotoluene 4-Chlorotoluene	μg/kg	1	MCERTS MCERTS	-	-		-
1,3,5-Trimethylbenzene	μg/kg			-	-	<u>-</u>	-
tert-Butylbenzene	μg/kg μα/kα	1	ISO 17025 MCERTS	-	-	-	-
1,2,4-Trimethylbenzene	μg/kg μg/kg	1	ISO 17025	-	-	_	-
sec-Butylbenzene	μg/kg μg/kg	1	MCERTS	-	<u>-</u>	<u>-</u>	-
1,3-Dichlorobenzene		1	ISO 17025	-	<u>-</u>	<u>-</u>	-
p-Isopropyltoluene	μg/kg μg/kg	1	ISO 17025	-	-	_	-
1,2-Dichlorobenzene	μg/kg μg/kg	1	MCERTS	-	<u>-</u>	<u>-</u>	-
1,4-Dichlorobenzene	μg/kg μg/kg	1	MCERTS	-	-	<u>-</u>	-
Butylbenzene	μg/kg μg/kg	1	MCERTS	-	<u>-</u>	-	-
1,2-Dibromo-3-chloropropane	μg/kg μg/kg	1	ISO 17025	-	<u> </u>	<u>-</u>	-
1/2 DIDIOMO-3-CHIOTOPIOPANE	μg/ Kg	<u> </u>	130 1/023				

Lab Sample Number	1671277	1671278	1671279	1671280			
Sample Reference	WS101	WS101	WS102	WS104			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.10	2.30	0.10	0.10			
Date Sampled	29/10/2020	29/10/2020	29/10/2020	29/10/2020			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-

Lab Sample Number				1671277	1671278	1671279	1671280
Sample Reference				WS101	WS101	WS102	WS104
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	2.30	0.10	0.10
Date Sampled				29/10/2020	29/10/2020	29/10/2020	29/10/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	_	6	S t S				
(Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
` ' '	V)	르 및	s di				
SVOCs				1			
Aniline	mg/kg	0.1	NONE	-	-	-	-
Phenol	mg/kg	0.2	ISO 17025	-	-	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	-
Isophorone	mg/kg	0.2	MCERTS	-	-	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-
Naphthalene	mg/kg	0.05	MCERTS	-	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	-	-
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-			-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-		
Acenaphthene 2.4-Dinitrotoluene	mg/kg	0.05	MCERTS	-	-	-	-
Dibenzofuran	mg/kg	0.2	MCERTS MCERTS	-	-	_	-
	mg/kg			-	-	_	-
4-Chlorophenyl phenyl ether Diethyl phthalate	mg/kg	0.3	ISO 17025 MCERTS	-	-	-	-
4-Nitroaniline	mg/kg ma/ka	0.2	MCERTS	-	-		-
Fluorene	mg/kg	0.05	MCERTS				
Azobenzene	mg/kg	0.03	MCERTS	-		<u>-</u>	_
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	-
Hexachlorobenzene	mg/kg	0.2	MCERTS	-	<u> </u>	_	_
Phenanthrene	mg/kg	0.05	MCERTS	-	<u> </u>	<u>-</u>	_
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-
Carbazole	mg/kg	0.03	MCERTS	-	<u> </u>	_	_
Dibutyl phthalate	mg/kg	0.2	MCERTS	-			
				-	<u>-</u>	-	-
Anthraquinone Fluoranthene	mg/kg mg/kg	0.3	MCERTS MCERTS	-	<u>-</u>	<u>-</u>	-
	mg/kg	0.05	MCERTS	-	-	_	-
Pyrene Butyl benzyl phthalate	mg/kg mg/kg	0.05	ISO 17025	-	-	-	-
Benzo(a)anthracene		0.05	MCERTS	-	-	<u>-</u>	-
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(b)fluoranthene	mg/kg mg/kg	0.05	MCERTS	-	-	-	-
Benzo(k)fluoranthene		0.05	MCERTS	-	-	<u>-</u>	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg			-	-	<u>-</u>	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	_	-	•	

Lab Sample Number				1671277	1671278	1671279	1671280
Sample Reference	WS101	WS101	WS102	WS104			
Sample Number					None Supplied	None Supplied	None Supplied
Depth (m)					2.30	0.10	0.10
Date Sampled	29/10/2020	29/10/2020	29/10/2020	29/10/2020			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
Dibenz(a,h)anthracene	mg/kg 0.05 MCERTS		-	-	-	-	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-

Lab Sample Number				1671281	1671282	1671283	1671284
Sample Reference				WS106	WS106	WS109	WS109
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.20	0.80	0.10	0.80
Date Sampled				30/10/2020	30/10/2020	30/10/2020	30/10/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	2	Lin	Acc ta				
(Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	% 0.01 NONE 26		40	30	20		
Total mass of sample received	kg	0.001	NONE	0.4	0.4	0.4	0.4
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	-
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	6.8	-	-	7.9
Total Cyanide	mg/kg	1	MCERTS	< 1	-	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	520	-	-	650
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	0.054	-	-	0.044
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	110	-	-	89
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	53.9	-	-	44.3
Sulphide	mg/kg	1	MCERTS	81	-	-	2.6
Total Sulphur	mg/kg	50	MCERTS	1100	-	-	540
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.3	-	-	2.6
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	-	< 1.0
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	-	0.22	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	0.44	0.97
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	0.45	0.91
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	0.28	0.61
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	0.21	0.45
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	0.27	0.68
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	0.19	0.25
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	0.2	0.48
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	-	2.26	4.35
· · · · · · · · · · · · · · · · · · ·	3, 3						

			1671281	1671282	1671283	1671284
			WS106	WS106	WS109	WS109
			None Supplied	None Supplied	None Supplied	None Supplied
			1.20	0.80	0.10	0.80
			30/10/2020	30/10/2020	30/10/2020	30/10/2020
			None Supplied	None Supplied	None Supplied	None Supplied
Units	Limit of detecti on	Accredi tation Status				
mg/kg	1	MCERTS	10	-	13	13
mg/kg	1	MCERTS	-	-	150	-
mg/kg	0.06	MCERTS	-	-	1.1	-
mg/kg	0.2	MCERTS	-	-	1.6	-
mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	< 0.2
mg/kg	4	MCERTS	< 4.0	-	< 4.0	< 4.0
mg/kg	1	MCERTS	47	-	-	32
mg/kg	1	MCERTS	30	-	60	89
mg/kg	1	MCERTS	20	-	70	110
mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	< 0.3
mg/kg	1	MCERTS	54	-	35	35
mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
mg/kg	1	MCERTS	-	-	36	-
mg/kg	1	MCERTS	90	-	86	95
mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0
	mg/kg	mg/kg 1 mg/kg 1 mg/kg 0.06 mg/kg 0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 4 mg/kg 1	mg/kg 1 MCERTS mg/kg 1 MCERTS mg/kg 0.06 MCERTS mg/kg 0.2 MCERTS mg/kg 0.2 MCERTS mg/kg 4 MCERTS mg/kg 1 MCERTS mg/kg 1 MCERTS mg/kg 0.3 MCERTS mg/kg 1 MCERTS	WS106 None Supplied 1.20 30/10/2020 None Supplied	WS106 WS106 None Supplied 1.20 0.80 30/10/2020 30/10/2020 None Supplied None Supplied 1.20 0.80 30/10/2020 None Supplied None Supp	WS106 WS106 WS109

TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	70	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	41	2700	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	140	9400	< 1.0	< 1.0
TPH (C21 - C35)	mg/kg	1	MCERTS	49	3400	< 1.0	< 1.0
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	120	< 10	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	240	16000	< 10	< 10

Lab Sample Number				1671281	1671282	1671283	1671284
Sample Reference				WS106	WS106	WS109	WS109
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.20	0.80	0.10	0.80
Date Sampled				30/10/2020	30/10/2020	30/10/2020	30/10/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
		<u> </u>	(0 -+ >	чопе заррпеа	14011С Эфриса	None Supplied	None Supplied
Analytical Parameter	Units	Limit of detecti on	Accredi tation Status				
(Soil Analysis)	S.	of Cti	edi on us				
VOCs							
Chloromethane	μg/kg	1	ISO 17025	-	< 1.0	-	-
Chloroethane	μg/kg	1	NONE	-	< 1.0	-	-
Bromomethane	μg/kg	1	ISO 17025	-	< 1.0	-	-
Vinyl Chloride	μg/kg	1	NONE	-	< 1.0	-	-
Trichlorofluoromethane	μg/kg	1	NONE	-	< 1.0	-	-
1,1-Dichloroethene	μg/kg	1	NONE	-	< 1.0	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	< 1.0	-	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	< 1.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	-	-
1,1-Dichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	-
2,2-Dichloropropane	μg/kg	1	MCERTS	-	< 1.0	-	-
Trichloromethane	μg/kg	1	MCERTS	-	< 1.0	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	-
1,2-Dichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	-
1,1-Dichloropropene	μg/kg	1	MCERTS	_	< 1.0	_	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	_	< 1.0	_	_
Benzene	μg/kg	1	MCERTS	_	< 1.0	_	-
Tetrachloromethane	μg/kg	1	MCERTS	-	< 1.0	_	_
1,2-Dichloropropane	μg/kg	1	MCERTS	_	< 1.0	_	_
Trichloroethene	μg/kg	1	MCERTS	-	< 1.0	_	_
Dibromomethane	μg/kg	1	MCERTS	-	< 1.0	_	_
Bromodichloromethane	μg/kg	1	MCERTS	_	< 1.0	_	_
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	< 1.0	_	_
Trans-1,3-dichloropropene	μg/kg μg/kg	1	ISO 17025	-	< 1.0	_	_
Toluene	μg/kg	1	MCERTS	-	< 1.0	_	_
1,1,2-Trichloroethane	μg/kg μg/kg	1	MCERTS	-	< 1.0	_	-
1,3-Dichloropropane	μg/kg μg/kg	1	ISO 17025	-	< 1.0	_	_
Dibromochloromethane	μg/kg μg/kg	1	ISO 17025	_	< 1.0	_	_
Tetrachloroethene	μg/kg μg/kg	1	NONE	-	< 1.0	_	_
1.2-Dibromoethane	μg/kg μg/kg	1	ISO 17025	_	< 1.0	_	_
Chlorobenzene	μg/kg μg/kg	1	MCERTS	_	< 1.0	_	_
1,1,1,2-Tetrachloroethane	μg/kg μg/kg	1	MCERTS	-	< 1.0	_	_
Ethylbenzene		1	MCERTS	_	< 1.0	_	_
p & m-Xylene	μg/kg μg/kg	1	MCERTS	-	< 1.0	-	-
Styrene	μg/kg μα/ka	1	MCERTS	-	< 1.0		
Tribromomethane	13/3	1	NONE	-	< 1.0	-	-
o-Xylene	μg/kg		MCERTS	-	< 1.0		
1,1,2,2-Tetrachloroethane	μg/kg μg/kg	1	MCERTS	-	< 1.0	-	-
Isopropylbenzene			MCERTS	-	< 1.0	<u>-</u>	<u>-</u>
	μg/kg	1		-		-	-
Bromobenzene n-Propylhenzene	μg/kg μα/kα	1	MCERTS		< 1.0		-
n-Propylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	
2-Chlorotoluene 4-Chlorotoluene	μg/kg	1	MCERTS	-	< 1.0 < 1.0	-	-
	μg/kg	1	MCERTS				
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	-
tert-Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	-
sec-Butylbenzene	μg/kg "	1	MCERTS	-	< 1.0	-	-
1,3-Dichlorobenzene	μg/kg 	1	ISO 17025	-	< 1.0	-	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	< 1.0	-	-
1,2-Dichlorobenzene	μg/kg 	1	MCERTS	-	< 1.0	-	-
1,4-Dichlorobenzene	μg/kg 	1	MCERTS	-	< 1.0	-	-
Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	< 1.0	-	-

Lab Sample Number				1671281	1671282	1671283	1671284
Sample Reference				WS106	WS106	WS109	WS109
Sample Number					None Supplied	None Supplied	None Supplied
Depth (m)					0.80	0.10	0.80
Date Sampled					30/10/2020	30/10/2020	30/10/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	detecti on	# # 50 78				
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	< 1.0	-	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	< 1.0	-	-

o Sample Number				1671281	1671282	1671283	1671284
Sample Reference				WS106	WS106	WS109	WS109
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.20	0.80	0.10	0.80
Date Sampled				30/10/2020	30/10/2020	30/10/2020	30/10/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
	_	<u>م</u> ت	s + Þ	None Supplied	Hone Supplied	Hone Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
SVOCs							
Aniline	mg/kg	0.1	NONE	-	< 0.1	-	-
Phenol	mg/kg	0.2	ISO 17025	-	< 0.2	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	< 0.1	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	< 0.2	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	< 0.1	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	< 0.1	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	< 0.3	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	< 0.2	-	-
Isophorone	mg/kg	0.2	MCERTS	-	< 0.2	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-	< 0.3	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	< 0.3	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	< 0.3	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	-
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	< 0.3	-	-
4-Chloroaniline	mg/kg	0.1	NONE	-	< 0.1	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	< 0.1	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	< 0.1	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	< 0.1	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	< 0.2	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	< 0.1	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	< 0.1	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	< 0.1	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	< 0.1	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	< 0.2	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	< 0.2	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	< 0.3	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	< 0.2	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	< 0.2	-	-
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Azobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	< 0.2	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Carbazole	mg/kg	0.3	MCERTS	-	< 0.3	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	< 0.2	-	-
Anthraquinone	mg/kg	0.3	MCERTS	-	< 0.3	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	< 0.3	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-

Lab Sample Number				1671281	1671282	1671283	1671284
Sample Reference		WS106	WS106	WS109	WS109		
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	1.20	0.80	0.10	0.80			
Date Sampled	30/10/2020	30/10/2020	30/10/2020	30/10/2020			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
Dibenz(a,h)anthracene	ene mg/kg 0.05 MCERTS			-	< 0.05	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05	-	-

Analytical Report Number: 20-39132 Project / Site name: Albatross

Your Order No: 14 451 SE G Lab Sample Number				1671285	1671286
Sample Reference			$\overline{}$	WS103	WS106
Sample Number				None Supplied	None Supplied
Depth (m)				0.20	0.80
Date Sampled				29/10/2020	30/10/2020
Time Taken				None Supplied	None Supplied
Analytical Parameter	c	d Fi	ន ដ ទ	 	
(Leachate Analysis)	Units	Limit of detection	Accredi tation Status	1	1
(Letterrate Final year)		드것	is ⊃ ≟		<u> </u>
General Inorganics					
pH	pH Units	N/A	ISO 17025	7.8	7.9
рп Total Cyanide (Low Level 1 µg/l)	pπ onits μg/l	1 1	ISO 17025	< 1.0	< 1.0
Total Cyanide (Low Level 1 pg/-)	Fai.		130 1/022	` 1.0	~ 2.0
Total Phenols					
Total Phenols (monohydric)	μg/l	1	ISO 17025	12	10
Total Friends (monthly 2007)	1 15		100		
Speciated PAHs					
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01	< 0.01
Dibenz(a,h)anthracene Benzo(ghi)perylene	μg/l	0.01	NONE NONE	< 0.01 < 0.01	< 0.01 < 0.01
Benzo(grii)pei yierie	μg/l	0.01	NONL	< 0.01	< 0.01
Total PAH					
Total EPA-16 PAHs	μg/l	0.2	NONE	< 0.2	< 0.2
TOTAL FLA-TO LATES	Fai .	- U.L	NOIL	` 0.2	-, 0
Heavy Metals / Metalloids					
Arsenic (dissolved)	μg/l	1	ISO 17025	< 1.0	12
Cadmium (dissolved)	μg/l	0.08	ISO 17025	< 0.08	0.1
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0	< 5.0
Chromium (dissolved)	μg/l	0.4	ISO 17025	0.7	< 0.4
Copper (dissolved)	μg/l	0.7	ISO 17025	7.4	12
Lead (dissolved)	μg/l	1	ISO 17025	3.2	8.1
Mercury (dissolved)	µg/l	0.5	ISO 17025	< 0.5	< 0.5
Nickel (dissolved)	μg/l	0.3	ISO 17025	1.3	2.5
Selenium (dissolved)	μg/l	4	ISO 17025	< 4.0	< 4.0
Zinc (dissolved)	μg/l	0.4	ISO 17025	18	27
	_	_	_	_	_
Monoaromatics & Oxygenates					=
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0

NONE

10

μg/l

< 10

< 10

MTBE (Methyl Tertiary Butyl Ether)

Analytical Report Number: 20-39132 Project / Site name: Albatross

Your Order No: 14 451 SE G

Your Order No: 14 451 SE G					
Lab Sample Number				1671285	1671286
Sample Reference				WS103	WS106
Sample Number				None Supplied	None Supplied
Depth (m)				0.20	0.80
Date Sampled				29/10/2020	30/10/2020
Time Taken				None Supplied	None Supplied
Analytical Parameter (Leachate Analysis)	Units	Limit of detecti	Accredi tation Status		
Petroleum Hydrocarbons	•				
TPH1 (C10 - C40)	μg/l	10	NONE	< 10	< 10
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10
TPH-CWG - Aromatic >C5 - C7		Ι.	100 17025	< 1.0	< 1.0
TPH-CWG - Aromatic >C5 - C7 TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0
	μg/l	1	ISO 17025		< 1.0 < 1.0
TPH-CWG - Aromatic >C8 - C10 TPH-CWG - Aromatic >C10 - C12	μg/l	1	ISO 17025	< 1.0	
	μg/l	10	NONE	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10

Analytical Report Number : 20-39132 Project / Site name: Albatross

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1671277	WS101	None Supplied	0.1	Brown loam and clay with gravel and vegetation.
1671278	WS101	None Supplied	2.3	Brown clay and sand with gravel.
1671279	WS102	None Supplied	0.1	Brown clay.
1671280	WS104	None Supplied	0.1	Brown clay and sand with gravel and vegetation.
1671281	WS106	None Supplied	1.2	Brown clay and sand with gravel.
1671282	WS106	None Supplied	0.8	Brown clay and sand with vegetation.
1671283	WS109	None Supplied	0.1	Brown clay and sand with vegetation.
1671284	WS109	None Supplied	0.8	Brown clay and sand with vegetation.

Analytical Report Number : 20-39132 Project / Site name: Albatross

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
BS EN 12457-1 (2:1) Leachate Prep	2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-1.	L043-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in leachate	Determination of hexavalent chromium in leachate by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in leachate - LOW LEVEL 1 ug/l	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L102B-PL	W	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
pH at 20oC in leachate	Determination of pH in leachate by electrometric measurement.	In house method.	L005-PL	W	ISO 17025
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS

Analytical Report Number: 20-39132 Project / Site name: Albatross

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
TPH1 (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	W	NONE
TPHCWG (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	W	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in leachates (Monoaromatics)	Determination of BTEX and MTBE in leachates by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Total cyanide in leachate - 1µg/l	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	w	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Sulphate, water soluble, in soil (1hr extraction)	Sulphate, water soluble, in soil (1hr extraction)	In-house method	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Stuart Ellis

e3p Taylor Road Urmston Manchester M41 7JQ

e: sellis@e3p.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-39338

Project / Site name: Albatross Samples received on: 03/11/2020

Your job number: Samples instructed on/ 04/11/2020

Analysis started on:

Your order number: 14 451 SE G **Analysis completed by:** 10/11/2020

Report Issue Number: 1 Report issued on: 10/11/2020

Samples Analysed: 1 leachate sample - 6 soil samples

Signed:

Will Fardon

Technical Reviewer (CS Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1672244	1672245	1672246	1672247
Sample Reference				WS103	WS111	WS113	WS114
Sample Number					None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied 1.10	0.20	0.10	0.20
Date Sampled				29/10/2020	02/11/2020	02/11/2020	02/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Time Taken			>	Hone Supplied	Hone Supplied	Hone Supplied	Hone Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	25	22	20	24
Total mass of sample received	kg	0.001	NONE	0.5	0.4	0.2	0.4
Asbestos in Soil	Туре	N/A	ISO 17025	-	Not-detected	-	Not-detected
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	7.8	7.7	-	-
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	930	650	-	-
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	0.03	0.025	-	-
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	60	50	-	-
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	30.2	25.1	-	-
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	-	-
Total Sulphur	mg/kg	50	MCERTS	670	550	-	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	2.4	4.2	-	3.8
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	-
Speciated PAHs	3, 3			•	·		
Naphthalene	mg/kg	0.05	MCERTS	-	0.94	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	-	3.8	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	0.36	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	-	0.71	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	-	5.3	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	3.1	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	-	60	< 0.05	0.57
Pyrene	mg/kg	0.05	MCERTS	-	77	< 0.05	0.69
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	45	< 0.05	0.35
Chrysene	mg/kg	0.05	MCERTS	-	36	< 0.05	0.39
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	71	< 0.05	0.52
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	26	< 0.05	0.28
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	70	< 0.05	0.59
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	26	< 0.05	0.3
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	7	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	30	< 0.05	0.32
Total PAH			•				
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	462	< 0.80	4.01

Lab Sample Number				1672244	1672245	1672246	1672247
Sample Reference				WS103	WS111	WS113	WS114
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.10	0.20	0.10	0.20
Date Sampled				29/10/2020	02/11/2020	02/11/2020	02/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	12	12	8.5	14
Barium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	86	120
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	-	-	0.64	1.1
Boron (water soluble)	mg/kg	0.2	MCERTS	-	-	1.1	0.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.4	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	23	30	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	40	27	16	27
Lead (aqua regia extractable)	mg/kg	1	MCERTS	30	43	23	37
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	31	25	19	30
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	29	40
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	69	96	38	73
Petroleum Hydrocarbons							
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	7.7	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	32	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	170	< 1.0	< 1.0
TPH (C21 - C35)	mg/kg	1	MCERTS	< 1.0	410	< 1.0	< 1.0
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	22	< 10	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	< 10	650	< 10	< 10

Lab Sample Number				1672248	1672249
Sample Reference				WS116	WS117
Sample Number	None Supplied	None Supplied			
Depth (m)	0.70	0.20			
Date Sampled				02/11/2020	03/11/2020
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	15	14
Total mass of sample received	kg	0.001	NONE	0.5	0.5
	•				
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected
General Inorganics					
pH - Automated	pH Units	N/A	MCERTS	8.1	-
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	410	-
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	0.013	-
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	26	-
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	13.1	-
Sulphide	mg/kg	1	MCERTS	< 1.0	-
Total Sulphur	mg/kg	50	MCERTS	130	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.5	-
Total Phenois					
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-
Speciated PAHs	•				
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Total PAH					

Lab Sample Number	1672248	1672249			
Sample Reference	WS116	WS117			
Sample Number				None Supplied	None Supplied
Depth (m)				0.70	0.20
Date Sampled				02/11/2020	03/11/2020
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Heavy Metals / Metalloids					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	4.3	6.1
Barium (aqua regia extractable)	mg/kg	1	MCERTS	-	92
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	-	0.97
Boron (water soluble)	mg/kg	0.2	MCERTS	-	< 0.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	28	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	12	16
Lead (aqua regia extractable)	mg/kg	1	MCERTS	12	13
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	25	31
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	-	41
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	32	52

Petroleum Hydrocarbons

TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH (C21 - C35)	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	< 10	< 10

Analytical Report Number: 20-39338 Project / Site name: Albatross

Your	Order	No:	14	451	SE	G
------	-------	-----	----	-----	----	---

Lab Sample Number				1672250
Sample Reference				WS115
Sample Number				None Supplied
Depth (m)				0.30
Date Sampled	02/11/2020			
Time Taken	None Supplied			
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

pH	pH Units	N/A	ISO 17025	7.8
Total Cyanide (Low Level 1 µg/l)	μg/l	1	ISO 17025	< 1.0

Total Phenois

Total Phenols (monohydric)	μg/l	1	ISO 17025	< 1.0

Speciated PAHs

Naphthalene	μg/l	0.01	ISO 17025	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	NONE	< 0.01
Benzo(ghi)perylene	μg/l	0.01	NONE	< 0.01

Total PAH

h	Total EPA-16 PAHs	μg/l	0.2	NONE	< 0.2

Heavy Metals / Metalloids

Arsenic (dissolved)	μg/l	1	ISO 17025	1.9
Cadmium (dissolved)	μg/l	0.08	ISO 17025	< 0.08
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0
Chromium (dissolved)	μg/l	0.4	ISO 17025	1.6
Copper (dissolved)	μg/l	0.7	ISO 17025	18
Lead (dissolved)	μg/l	1	ISO 17025	4.6
Mercury (dissolved)	μg/l	0.5	ISO 17025	< 0.5
Nickel (dissolved)	μg/l	0.3	ISO 17025	3.5
Selenium (dissolved)	μg/l	4	ISO 17025	< 4.0
Zinc (dissolved)	μg/l	0.4	ISO 17025	17

Analytical Report Number: 20-39338 Project / Site name: Albatross

Lab Sample Number						
Sample Reference						
Sample Number						
Depth (m)						
Date Sampled				02/11/2020		
Time Taken				None Supplied		
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status			
Monoaromatics & Oxygenates						
Benzene	μg/l	1	ISO 17025	< 1.0		
Toluene	μg/l	1	ISO 17025	< 1.0		
Ethylbenzene	μg/l	1	ISO 17025	< 1.0		
p & m-xylene	μg/l	1	ISO 17025	< 1.0		
o-xylene	μg/l	1	ISO 17025	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/l	10	NONE	< 10		
Petroleum Hydrocarbons						
TPH1 (C10 - C40)	μg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C16 - C21 TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10		
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10 10	NONE NONE	< 10 < 10		
TPH-CWG - Aliphatic (C5 - C55)	μg/l	10	NONE	< 10		
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aromatic > C10 - C12	μg/l	10	NONE	< 10		
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10		
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10		
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10		

10

μg/l

NONE

< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

TPH-CWG - Aromatic (C5 - C35)

Analytical Report Number : 20-39338 Project / Site name: Albatross

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1672244	WS103	None Supplied	1.1	Brown clay and loam with gravel and vegetation.
1672245	WS111	None Supplied	0.2	Brown clay and loam with gravel and vegetation.
1672246	WS113	None Supplied	0.1	Brown clay and loam with gravel and vegetation.
1672247	WS114	None Supplied	0.2	Brown clay and loam with gravel and vegetation.
1672248	WS116	None Supplied	0.7	Brown clay and loam with gravel and vegetation.
1672249	WS117	None Supplied	0.2	Brown clay and loam with gravel and vegetation.

Analytical Report Number : 20-39338 Project / Site name: Albatross

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
BS EN 12457-1 (2:1) Leachate Prep	2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-1.	L043-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in leachate	Determination of hexavalent chromium in leachate by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in leachate - LOW LEVEL 1 ug/l	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L102B-PL	W	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
pH at 20oC in leachate	Determination of pH in leachate by electrometric measurement.	In house method.	L005-PL	W	ISO 17025
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS

Analytical Report Number: 20-39338 Project / Site name: Albatross

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
TPH1 (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	W	NONE
TPHCWG (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	W	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in leachates (Monoaromatics)	Determination of BTEX and MTBE in leachates by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Total cyanide in leachate - 1µg/l	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Sulphate, water soluble, in soil (1hr extraction)	Sulphate, water soluble, in soil (1hr extraction)	In-house method	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Matt Jackson

e3p

Taylor Road Urmston Manchester M41 7JQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

e: mjackson@e3p.co.uk

Your order number:

Analytical Report Number: 20-39481

Project / Site name: Albatross Samples received on: 04/11/2020

Your job number: Samples instructed on/ 04/11/2020

Analysis started on:

Analysis completed by: 11/11/2020

Report issued on: **Report Issue Number:** 11/11/2020

Samples Analysed: 1 leachate sample - 4 soil samples

14-451-SE-G

Signed: M. Crewinska

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1673041	1673042	1673043	1673044
Sample Reference				WS118	WS119	WS120	WS121
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.80	0.10	0.20	0.10
Date Sampled				03/11/2020	03/11/2020	03/11/2020	03/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	2	Lin	Acc ta				
(Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	34	22	26	38
Total mass of sample received	kg	0.001	NONE	0.3	0.3	0.3	0.3
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	-	-
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	-	-	6.7	6.4
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	-	-	660	1000
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	-	-	0.014	0.019
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	-	-	28	37
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	-	-	13.8	18.5
Sulphide	mg/kg	1	MCERTS	-	-	< 1.0	1.3
Total Sulphur	mg/kg	50	MCERTS	-	-	520	700
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	2.8	-	6.1
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	-	-	< 1.0	< 1.0
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	0.23	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	0.19	< 0.05	< 0.05	0.18
Fluorene	mg/kg	0.05	MCERTS	0.14	< 0.05	< 0.05	0.12
Phenanthrene	mg/kg	0.05	MCERTS	1	0.72	0.59	0.24
Anthracene	mg/kg	0.05	MCERTS	0.27	0.2	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	3.8	1.9	0.94	0.41
Pyrene	mg/kg	0.05	MCERTS	3.8	1.7	0.81	0.4
Benzo(a)anthracene	mg/kg	0.05	MCERTS	2.6	1.3	0.33	0.23
Chrysene	mg/kg	0.05	MCERTS	2	0.77	0.34	0.17
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	3.1	1.3	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.6	0.54	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	2.8	1	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.5	0.44	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.37	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.7	0.47	< 0.05	< 0.05
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	25.1	10.2	3.01	1.75
· · · · · · · · · · · · · · · · · · ·	3, 3					· ·	

Lab Sample Number				1673041	1673042	1673043	1673044
Sample Reference				WS118	WS119	WS120	WS121
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)					0.10	0.20	0.10
Date Sampled				03/11/2020	03/11/2020	03/11/2020	03/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	24	13	12	13
Barium (aqua regia extractable)	mg/kg	1	MCERTS	200	130	-	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.9	1	-	-
Boron (water soluble)	mg/kg	0.2	MCERTS	2.4	0.6	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.8	0.5	0.4	0.5
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	ı	-	38	39
Copper (aqua regia extractable)	mg/kg	1	MCERTS	89	42	33	42
Lead (aqua regia extractable)	mg/kg	1	MCERTS	100	51	43	49
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.4	0.4	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	40	28	33	37
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	49	38	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	180	110	91	98
Petroleum Hydrocarbons							
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	80	< 4.0	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	110	6.9	< 1.0	< 1.0
TPH (C21 - C35)	mg/kg	1	MCERTS	170	14	< 1.0	< 1.0
TPH (C35 - C40)	mg/kg	10	MCERTS	26	< 10	< 10	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	380	22	< 10	< 10

Analytical Report Number: 20-39481 Project / Site name: Albatross

V	A		44 454	CF C
Your	oraer	NO:	14-451	-SE-G

1001 Older 110. 14 431 SE G				
Lab Sample Number	1673045			
Sample Reference	WS120			
Sample Number	None Supplied			
Depth (m)	1.00			
Date Sampled				03/11/2020
Time Taken				None Supplied
Analytical Parameter (Leachate Analysis)	Units	Limit of detecti	Accredi tation Status	

General Inorganics

pH	pH Units	N/A	ISO 17025	8
Total Cyanide (Low Level 1 µg/l)	ua/l	1	ISO 17025	< 1.0

Total Phenois

Total Phenols (monohydric)	μg/l	1	ISO 17025	< 1.0

Speciated PAHs

Naphthalene	μg/l	0.01	ISO 17025	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	NONE	< 0.01
Benzo(ghi)perylene	μg/l	0.01	NONE	< 0.01

Total PAH

Total EPA-16 PAHs	ua/l	0.2	NONE	< 0.2

Heavy Metals / Metalloids

Arsenic (dissolved)	μg/l	1	ISO 17025	1
Cadmium (dissolved)	μg/l	0.08	ISO 17025	< 0.08
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0
Chromium (dissolved)	μg/l	0.4	ISO 17025	< 0.4
Copper (dissolved)	μg/l	0.7	ISO 17025	4
Lead (dissolved)	μg/l	1	ISO 17025	4.8
Mercury (dissolved)	μg/l	0.5	ISO 17025	< 0.5
Nickel (dissolved)	μg/l	0.3	ISO 17025	< 0.3
Selenium (dissolved)	μg/l	4	ISO 17025	< 4.0
Zinc (dissolved)	μg/l	0.4	ISO 17025	3.3

Monoaromatics & Oxygenates

Benzene	μg/l	1	ISO 17025	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	10	NONE	< 10

Analytical Report Number: 20-39481 Project / Site name: Albatross

Your Order No: 14-451-SE-G

Your Order No: 14-451-SE-G						
Lab Sample Number				1673045		
Sample Reference				WS120		
Sample Number	None Supplied					
Depth (m)				1.00		
Date Sampled	03/11/2020					
Time Taken						
Analytical Parameter (Leachate Analysis)	Units	Limit of detecti on	Accredi tation Status			
Petroleum Hydrocarbons						
TPH1 (C10 - C40)	μg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10		
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10		
TPH-CWG - Aromatic >C5 - C7			ISO 17025	< 1.0		
TPH-CWG - Aromatic >C5 - C7 TPH-CWG - Aromatic >C7 - C8	μg/l	1		< 1.0		
TPH-CWG - Aromatic >C7 - C8 TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aromatic >C8 - C10 TPH-CWG - Aromatic >C10 - C12	μg/l	1	ISO 17025 NONE	< 1.0		
TPH-CWG - Aromatic >C10 - C12 TPH-CWG - Aromatic >C12 - C16	μg/l	10		< 10		
TPH-CWG - Aromatic >C12 - C16 TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10		
TPH-CWG - Aromatic >C16 - C21 TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10		
	μg/l	10	NONE			
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10		

Analytical Report Number : 20-39481 Project / Site name: Albatross

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1673041	WS118	None Supplied	0.8	Brown loam and sand with vegetation.
1673042	WS119	None Supplied	0.1	Brown loam and sand with vegetation.
1673043	WS120	None Supplied	0.2	Brown loam and sand with vegetation.
1673044	WS121	None Supplied	0.1	Brown loam and sand with vegetation.

Analytical Report Number : 20-39481 Project / Site name: Albatross

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent). In house method.		L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
BS EN 12457-1 (2:1) Leachate Prep	2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.		L043-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. In house method based on HSG 248		A001-PL	D	ISO 17025
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in leachate	t chromium in leachate Determination of hexavalent chromium in leachate by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry. In-house method		L080-PL	W	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.		L080-PL	W	MCERTS
Moisture Content	Content Moisture content, determined gravimetrically. (30 oC) In house method.		L019-UK/PL	W	NONE
Monohydric phenols in leachate - LOW LEVEL 1 ug/l	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L102B-PL	W	NONE
Speciated EPA-16 PAHs in soil	ted EPA-16 PAHs in soil Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards. In-house method based on USEPA 8270		L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
pH at 20oC in leachate	Determination of pH in leachate by electrometric measurement.	In house method.	L005-PL	W	ISO 17025
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS

Analytical Report Number: 20-39481 Project / Site name: Albatross

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
TPH1 (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	W	NONE
TPHCWG (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	W	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in leachates (Monoaromatics)	Determination of BTEX and MTBE in leachates by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Total cyanide in leachate - 1µg/l	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Sulphate, water soluble, in soil (1hr extraction)	Sulphate, water soluble, in soil (1hr extraction)	In-house method	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Stuart Ellis

e3p Taylor Road Urmston Manchester M41 7JQ

e: sellis@e3p.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-39827

Project / Site name: Albatross Samples received on: 05/11/2020

Your job number: Samples instructed on/ 05/11/2020

Analysis started on:

Your order number: 14-451-SE-G **Analysis completed by:** 12/11/2020

Report Issue Number: 1 **Report issued on:** 12/11/2020

Samples Analysed: 1 leachate sample - 3 soil samples

Signed: M. Chenninska

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1675011	1675012	1675013
Sample Reference				WS123	WS124	WS125
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)					1.10	0.10
Date Sampled					04/11/2020	04/11/2020
Time Taken				04/11/2020 None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	5.9	17	18
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5
Ashastas in Call			1 700 47005	Not detected	Not detected	Not detected
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected
General Inorganics						
pH - Automated	pH Units	N/A	MCERTS	-	8.7	-
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	-	610	-
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	-	0.07	-
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	-	140	-
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	-	70.3	-
Sulphide	mg/kg	1	MCERTS	-	9.3	-
Total Sulphur	mg/kg	50	MCERTS	-	220	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	0.6	-
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	_
Total Thomas (monon, and)	9/9		11021110		1 210	
Speciated PAHs						
Naphthalene	mg/kg	0.05	MCERTS	0.98	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	0.24	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	0.49	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	0.45	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	5.3	0.33	< 0.05
Anthracene	mg/kg	0.05	MCERTS	1.8	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	12	0.57	< 0.05
Pyrene	mg/kg	0.05	MCERTS	11	0.54	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	6.8	0.39	< 0.05
Chrysene	mg/kg	0.05	MCERTS	4.6	0.3	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	5.7	0.31	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	2.5	0.24	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	5.5	0.28	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	2.4	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.61	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	2.6	< 0.05	< 0.05
Total PAH						
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	62.8	2.96	< 0.80
1						

Lab Sample Number				1675011	1675012	1675013
Sample Reference	WS123	WS124	WS125			
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)	0.20	1.10	0.10			
Date Sampled					04/11/2020	04/11/2020
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	12	12	8.6
Barium (aqua regia extractable)	mg/kg	1	MCERTS	140	-	89
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.1	-	0.71
Boron (water soluble)	mg/kg	0.2	MCERTS	0.3	-	0.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.6	0.3	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	33	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	75	29	29
Lead (aqua regia extractable)	mg/kg	1	MCERTS	34	19	23
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	23	32	22
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	37	-	25
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	130	54	52
Petroleum Hydrocarbons						
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	9.3	2.5	12
TPH (C12 - C16)	mg/kg	4	MCERTS	15	12	25
TPH (C16 - C21)	mg/kg	1	MCERTS	44	16	25
TPH (C21 - C35)	mg/kg	1	MCERTS	88	45	59
TPH (C35 - C40)	mg/kg	10	MCERTS	19	< 10	12
·						

10

mg/kg

MCERTS

190

80

150

U/S = Unsuitable Sample I/S = Insufficient Sample

TPH Total C5 - C40

Analytical Report Number: 20-39827 Project / Site name: Albatross

Your Order No: 14-451-SE-G	Your	Order	No:	14-451	-SE-G
----------------------------	------	-------	-----	--------	-------

Lab Sample Number				1675014
Sample Reference		WS125		
Sample Number	None Supplied			
Depth (m)	1.00			
Date Sampled	04/11/2020			
Time Taken				None Supplied
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

pH	pH Units	N/A	ISO 17025	7.5
Total Cyanide (Low Level 1 µg/l)	μg/l	1	ISO 17025	< 1.0

Total Phenois

Total Phenols (monohydric)	μg/l	1	ISO 17025	1.7	
----------------------------	------	---	-----------	-----	--

Speciated PAHs

Naphthalene	μg/l	0.01	ISO 17025	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	NONE	< 0.01
Benzo(ghi)perylene	μg/l	0.01	NONE	< 0.01

Total PAH

Total EPA-16 PAHs	μg/l	0.2	NONE	< 0.2

Heavy Metals / Metalloids

Arsenic (dissolved)	μg/l	1	ISO 17025	< 1.0
Cadmium (dissolved)	μg/l	0.08	ISO 17025	< 0.08
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0
Chromium (dissolved)	μg/l	0.4	ISO 17025	1.5
Copper (dissolved)	μg/l	0.7	ISO 17025	25
Lead (dissolved)	μg/l	1	ISO 17025	3.1
Mercury (dissolved)	μg/l	0.5	ISO 17025	< 0.5
Nickel (dissolved)	μg/l	0.3	ISO 17025	1.9
Selenium (dissolved)	μg/l	4	ISO 17025	< 4.0
Zinc (dissolved)	μg/l	0.4	ISO 17025	7.7

Analytical Report Number: 20-39827 Project / Site name: Albatross

Your Order No: 14-451-SE-G				
Lab Sample Number				1675014
Sample Reference				WS125
Sample Number				None Supplied
Depth (m)				1.00
Date Sampled				04/11/2020
Time Taken				None Supplied
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status	
Monoaromatics & Oxygenates				
Benzene	μg/l	1	ISO 17025	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	10	NONE	< 10
Petroleum Hydrocarbons TPH1 (C10 - C40)	μg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10

Analytical Report Number : 20-39827 Project / Site name: Albatross

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1675011	WS123	None Supplied	0.2	Brown clay and sand with gravel.
1675012	WS124	None Supplied	1.1	Brown clay and loam with gravel.
1675013	WS125	None Supplied	0.1	Brown clay and loam with gravel.

Analytical Report Number : 20-39827 Project / Site name: Albatross

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
BS EN 12457-1 (2:1) Leachate Prep	2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-1.	L043-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Metals by ICP-OES in leachate	by ICP-OES in leachate Determination of metals in leachate by acidification followed by ICP-OES.		L039-PL	W	ISO 17025
		In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in leachate	Determination of hexavalent chromium in leachate by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in leachate - LOW LEVEL 1 ug/l	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L102B-PL	W	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
pH at 20oC in leachate	Determination of pH in leachate by electrometric measurement.	In house method.	L005-PL	W	ISO 17025
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS

Analytical Report Number : 20-39827 Project / Site name: Albatross

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
TPH1 (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	W	NONE
TPHCWG (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	W	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in leachates (Monoaromatics)	Determination of BTEX and MTBE in leachates by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Total cyanide in leachate - 1µg/l	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Sulphate, water soluble, in soil (1hr extraction)	Sulphate, water soluble, in soil (1hr extraction)	In-house method	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Stuart Ellis

e3p Taylor Road Urmston Manchester M41 7JQ i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: sellis@e3p.co.uk

Analytical Report Number: 20-41763

Project / Site name: Albatross+ Razorbill Samples received on: 16/11/2020

Your job number: Samples instructed on/ 17/11/2020

Analysis started on:

Your order number: Analysis completed by: 24/11/2020

Report Issue Number: 1 Report issued on: 24/11/2020

Samples Analysed: 4 water samples

Signed: A. Cherwinska

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1686179	1686180	1686181	1686182
Sample Reference				WS109	WS112	WS119	WS123
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				13/11/2020	13/11/2020	13/11/2020	13/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
General Inorganics							
рН	pH Units	N/A	ISO 17025	7.2	7	7.5	7.4
Total Cyanide (Low Level 1 μg/l)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	9.88	11.8	12.7	7.94
Total Phenols							
Total Phenols (monohydric)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	3.5
Heavy Metals / Metalloids							
Calcium (dissolved)	mg/l	0.012	ISO 17025	170	100	100	110
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0
Arsenic (dissolved)	μg/l	0.15	ISO 17025	1.28	0.99	1.3	1.06
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.05	0.03	0.04	0.05
Chromium (dissolved)	μg/l	0.2	ISO 17025	5.9	4.8	6.7	4.6
Copper (dissolved)	μg/l	0.5	ISO 17025	4.6	4.1	7.4	6.6
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	0.2	< 0.2
Manganese (dissolved)	μg/l	0.05	ISO 17025	250	65	0.34	24
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	μg/l	0.5	ISO 17025	8.8	3.9	3.5	5.6
Selenium (dissolved)	μg/l	0.6	ISO 17025	1.3	< 0.6	32	3.5
Zinc (dissolved)	μg/l	0.5	ISO 17025	3.4	4.5	7.3	9.2
Monoaromatics & Oxygenates							
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons							
TPH1 (C10 - C40)	μg/l	10	NONE	< 10	< 10	< 10	< 10
	и						
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10

Lab Sample Number				1686179	1686180	1686181	1686182
Sample Reference	WS109	WS112	WS119	WS123			
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				13/11/2020	13/11/2020	13/11/2020	13/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10

Lab Sample Number				1686179	1686180	1686181	1686182
Sample Reference				WS109	WS112	WS119	WS123
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				13/11/2020	13/11/2020	13/11/2020	13/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
VOCs							
Chloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	μg/l "	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	μg/l "	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Benzene Takun ak laun makhan n	μg/l	1	ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
Tetrachloromethane	μg/l	1	ISO 17025				
1,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene Dibromomethane	μg/l /l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
Bromodichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
p & m-Xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
n-Propylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0

Lab Sample Number				1686179	1686180	1686181	1686182
Sample Reference	WS109	WS112	WS119	WS123			
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				13/11/2020	13/11/2020	13/11/2020	13/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
1,2-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0

Lab Sample Number				1000170	1000100	1000101	1000103
•				1686179 WS109	1686180 WS112	1686181 WS119	1686182 WS123
Sample Reference							
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied 13/11/2020	None Supplied
Date Sampled				13/11/2020	13/11/2020		13/11/2020
Time Taken	ı			None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
SVOCs							
Aniline	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Phenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2-Chlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroethyl)ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
1.2-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroisopropyl)ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2-Methylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Hexachloroethane	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Nitrobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
4-Methylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Isophorone	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2-Nitrophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2,4-Dimethylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroethoxy)methane	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
1,2,4-Trichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dichlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
4-Chloroaniline	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobutadiene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
4-Chloro-3-methylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2,4,6-Trichlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2,4,5-Trichlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2-Methylnaphthalene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2-Chloronaphthalene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Dimethylphthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2,6-Dinitrotoluene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dinitrotoluene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Dibenzofuran	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
4-Chlorophenyl phenyl ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Diethyl phthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
4-Nitroaniline	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Azobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Bromophenyl phenyl ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Carbazole	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Dibutyl phthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Anthraquinone	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Butyl benzyl phthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
V 1			ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01

Lab Sample Number				1686179	1686180	1686181	1686182
Sample Reference	WS109	WS112	WS119	WS123			
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				13/11/2020	13/11/2020	13/11/2020	13/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \hspace{0.5cm} \mbox{I/S} = \mbox{Insufficient Sample}$

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025
Monohydric phenols in water - LOW LEVEL 1 ug/l	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Semi-volatile organic compounds in water	Determination of semi-volatile organic compounds in leachate by extraction in dichloromethane followed by GC-MS.	In-house method based on USEPA 8270	L102B-PL	W	NONE
TPH1 (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS.	In-house method	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Low level total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample Deviation Report

Sample ID	Other ID			Sample Deviation	Test Name	Test Ref	Test Deviation
WS109	None Supplied	W	1686179	С	pH at 20oC in water (automated)	L099-PL	С
WS112	None Supplied	W	1686180	С	pH at 20oC in water (automated)	L099-PL	С
WS119	None Supplied	W	1686181	С	pH at 20oC in water (automated)	L099-PL	С
WS123	None Supplied	W	1686182	С	pH at 20oC in water (automated)	L099-PL	С

APPENDIX VII ORIGIN OF TIER I GENERIC ASSESSMENT CRITERIA

CONSTITUENT	ORIGIN OF RISK ASSESSMENT VALUE
Arsenic	2014 LQM/CIEH S4ULs
Cadmium	2014 LQM/CIEH S4ULs
Chromium	2014 LQM/CIEH S4ULs
Lead	2014 LQM/CIEH S4ULs
Mercury	2014 LQM/CIEH S4ULs - methylmercury
Nickel	2014 LQM/CIEH S4ULs
Selenium	2014 LQM/CIEH S4ULs
Copper	2014 LQM/CIEH S4ULs
Zinc	2014 LQM/CIEH S4ULs
Cyanide - Total	2014 LQM/CIEH S4ULs
Phenols - Total	2014 LQM/CIEH S4ULs
Naphthalene	
Acenaphthylene	
Acenaphthene	
Fluorene	
Phenanthrene	
Anthracene	
Fluoranthene	
Pyrene	
Benzo(a)Anthracene	
Chrysene	General assessment criteria (GAC) developed by CIEH/LQM Suitable 4
Benzo(b/k)Fluoranthene (iii)	Use Levels with supporting data from SR3, SR7 and existing Tox report
Benzo(a)Pyrene	where applicable. 1% SOM.
Indeno(123-cd)Pyrene	
Dibenzo(a,h)Anthracene	
Benzo(ghi)Perylene	
TPH C ₅ -C ₆ (aliphatic)	
TPH C ₆ -C ₈ (aliphatic)	
TPH C ₈ -C ₁₀ (aliphatic)	
TPH C ₁₀ -C ₁₂ (aliphatic)	
TPH C ₁₂ -C ₁₆ (aromatic)	
TPH C ₁₆ -C ₂₁ (aromatic)	
TPH C ₂₁ -C ₃₅ (aromatic)	

APPENDIX VIII GEOTECHNICAL TESTING RESULTS

LABORATORY REPORT

4043

Contract Number: PSL20/6283

Report Date: 07 December 2020

Client's Reference: 14-451

Client Name: E3P

Taylor Road Urmston Manchester M41 7JQ

For the attention of: Matt Jackson

Contract Title: Albatross and Razorbill

Date Received: 10/11/2020 Date Commenced: 10/11/2020 Date Completed: 7/12/2020

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

S Royle A Watkins R Berriman (Laboratory Manager) (Director) (Quality Manager)

H Daniels S Eyre L Knight
(Senior Technician) (Senior Technician) (Senior Technician)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
WS101		Liner	1.50	2.00	Dark brown gravelly slightly sandy CLAY.
WS101		D	1.00	1.45	Dark brown slightly gravelly slightly sandy CLAY.
WS101		D	2.00	2.45	Brown slightly gravelly sandy CLAY.
WS102		Liner	0.50	1.00	MADE GROUND brown slightly gravelly very sandy clay.
WS102		D	2.00	2.45	Brown slightly gravelly sandy CLAY.
WS103		Liner	2.50	3.00	Stiff brown slightly gravelly sandy CLAY.
WS103		D	1.00	1.45	Brown mottled grey slightly gravelly sandy CLAY.
WS103		D	2.00	2.45	Brown slightly gravelly sandy CLAY.
WS105		D	2.00	2.45	Brown slightly gravelly sandy CLAY.
WS106		Liner	2.50	3.00	Firm brown slightly gravelly sandy CLAY.
WS106		D	1.00	1.45	MADE GROUND brown slightly gravelly sandy clay.
WS107		D	1.00	1.45	Brown slightly gravelly sandy CLAY.
WS108		Liner	0.50	1.00	Firm brown slightly gravelly sandy CLAY.
WS108		D	2.00	2.45	Brown slightly gravelly sandy CLAY.
WS109		D	1.00	1.45	Brown slightly gravelly sandy CLAY.
WS110		D	1.00	1.45	Brown slightly gravelly sandy CLAY.
WS111		Liner	1.50	2.00	Very stiff brown slightly gravelly sandy CLAY.
WS111		D	1.00	1.45	Brown slightly gravelly sandy CLAY.
WS112		Liner	1.50	2.00	Very stiff brown slightly gravelly sandy CLAY.

Albatross and Razorbill

Contract No:
PSL20/6283
Client Ref:
14-451

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
WS112		D	2.00	2.45	Brown slightly gravelly sandy CLAY.
WS114		Liner	0.50	1.00	Brown slightly gravelly sandy CLAY.
WS114		D	1.00	1.45	Brown slightly gravelly sandy CLAY.
WS115		Liner	1.50	2.00	Firm brown slightly gravelly sandy CLAY.
WS115		D	2.00	2.45	Brown slightly gravelly sandy CLAY.
WS116		D	1.00	1.45	Brown slightly gravelly sandy CLAY.
WS117		Liner	1.50	2.00	Firm brown slightly gravelly sandy CLAY.
WS117		D	1.00	1.45	Brown slightly gravelly sandy CLAY.
WS123		D	1.00	1.45	Brown slightly gravelly sandy CLAY.
WS123		Liner	2.50	3.00	Very stiff brown slightly gravelly sandy CLAY.
WS124		D	2.00	2.45	Brown slightly gravelly sandy CLAY.
WS125		Liner	1.50	2.00	Brown slightly gravelly sandy CLAY.
WS118		D	1.00	1.45	MADE GROUND dark brown gravelly sandy clay.
WS118		D	2.00	2.45	Brown slightly gravelly sandy CLAY.
WS118		Liner	1.50	2.00	Soft brown gravelly sandy CLAY.
WS119		D	1.00	1.45	Brown slightly gravelly sandy CLAY.
WS120		D	2.00	2.45	Brown slightly gravelly sandy CLAY.
WS120		Liner	2.50	3.00	Firm brown slightly gravelly sandy CLAY.
WS121		D	1.00	1.45	Brown slightly gravelly sandy CLAY.

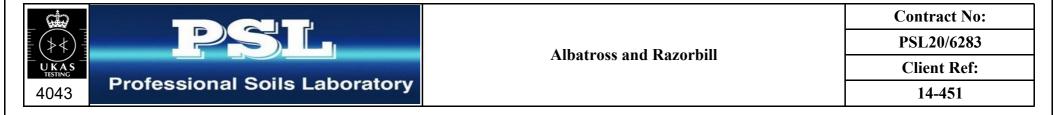
Albatross and Razorbill

Contract No:
PSL20/6283
Client Ref:
14-451

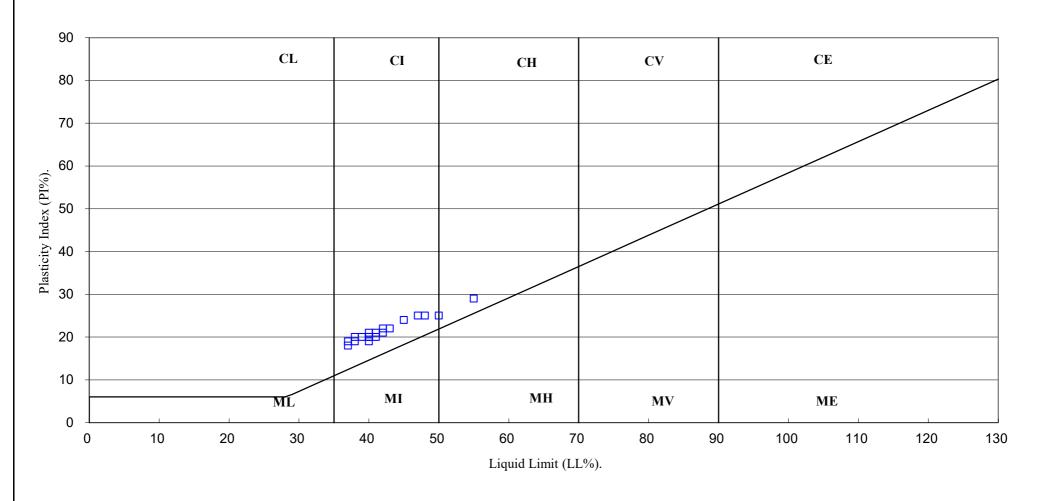
SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
WS121		D	2.00	2.45	Brown slightly gravelly sandy CLAY.
WS121		Liner	0.50	1.00	Stiff brown slightly gravelly sandy CLAY.

Contract No:
PSL20/6283
Client Ref:
14-451


SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377: PART 2: 1990)

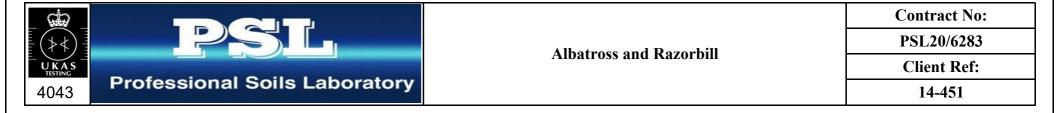

** 1	G. I	· ·	T.		Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing	ъ
Hole	Sample	Sample	Top	Base	Content	Shrinkage	Density 3	Limit	Limit	Index	.425mm	Remarks
Number	Number	Type	Depth	Depth	%	%	Mg/m^3	%	%	%	%	
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
WS101		D	1.00	1.45	33			50	25	25	93	High Plasticity CH
WS101		D	2.00	2.45	23			42	21	21	94	Intermediate Plasticity CI
WS102		D	2.00	2.45	21			40	20	20	92	Intermediate Plasticity CI
WS103		D	1.00	1.45	38			45	21	24	97	Intermediate Plasticity CI
WS103		D	2.00	2.45	24			47	22	25	94	Intermediate Plasticity CI
WS105		D	2.00	2.45	22			37	19	18	94	Intermediate Plasticity CI
WS106		D	1.00	1.45	28			55	26	29	93	High Plasticity CH
WS107		D	1.00	1.45	20			41	21	20	98	Intermediate Plasticity CI
WS108		D	2.00	2.45	18			40	20	20	91	Intermediate Plasticity CI
WS109		D	1.00	1.45	28			40	21	19	97	Intermediate Plasticity CI
WS110		D	1.00	1.45	20			42	20	22	97	Intermediate Plasticity CI
WS111		D	1.00	1.45	23			43	21	22	92	Intermediate Plasticity CI
WS112		D	2.00	2.45	18			38	19	19	90	Intermediate Plasticity CI
WS114		D	1.00	1.45	18			39	19	20	94	Intermediate Plasticity CI
WS115		D	2.00	2.45	21			48	23	25	95	Intermediate Plasticity CI
WS116		D	1.00	1.45	17			40	19	21	94	Intermediate Plasticity CI
WS117		D	1.00	1.45	17			37	18	19	92	Intermediate Plasticity CI
WS123		D	1.00	1.45	17			38	18	20	95	Intermediate Plasticity CI
WS124		D	2.00	2.45	19			41	20	21	97	Intermediate Plasticity CI

SYMBOLS: NP: Non Plastic

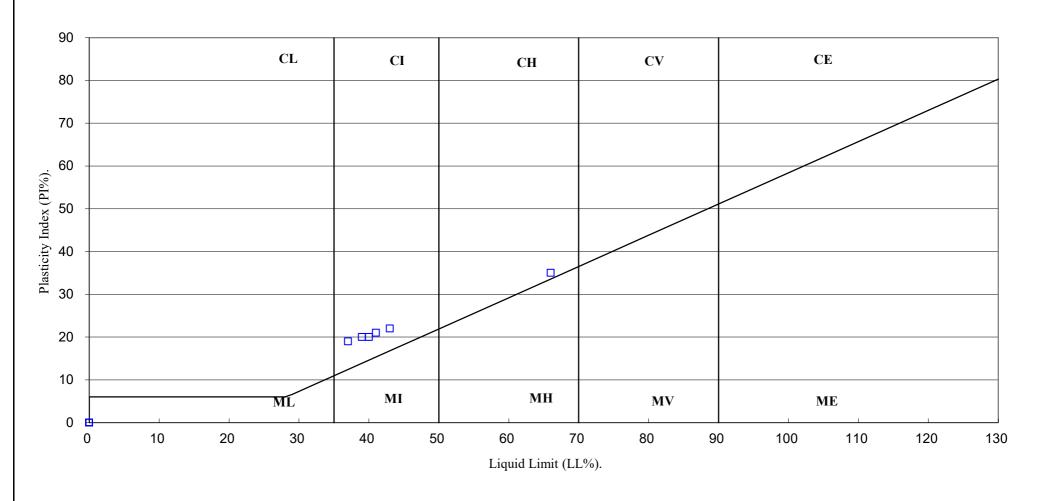
^{*:} Liquid Limit and Plastic Limit Wet Sieved.

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

Contract No:				
PSL20/6283				
Client Ref:				
14-451				


SUMMARY OF SOIL CLASSIFICATION TESTS

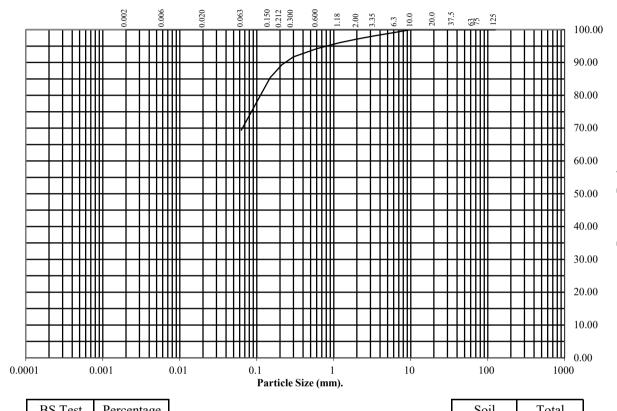
(BS1377: PART 2: 1990)


Hole Number	Sample Number	Sample Type	Top Depth	Base Depth	Moisture Content %	Linear Shrinkage %	Particle Density Mg/m ³	Liquid Limit %	Plastic Limit %	Plasticity Index %	Passing .425mm %	Remarks
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
WS118		D	1.00	1.45	48			66	31	35	83	High Plasticity CH
WS118		D	2.00	2.45	22			37	18	19	98	Intermediate Plasticity CI
WS119		D	1.00	1.45	19			41	20	21	96	Intermediate Plasticity CI
WS120		D	2.00	2.45	18			39	19	20	92	Intermediate Plasticity CI
WS121		D	1.00	1.45	18			43	21	22	91	Intermediate Plasticity CI
WS121		D	2.00	2.45	19			40	20	20	94	Intermediate Plasticity CI

SYMBOLS: NP: Non Plastic

^{*:} Liquid Limit and Plastic Limit Wet Sieved.

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.


Contract No:				
PSL20/6283				
Client Ref:				
14-451				

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: WS102 Top Depth (m): 0.50

Sample Number: Base Depth(m): 1.00

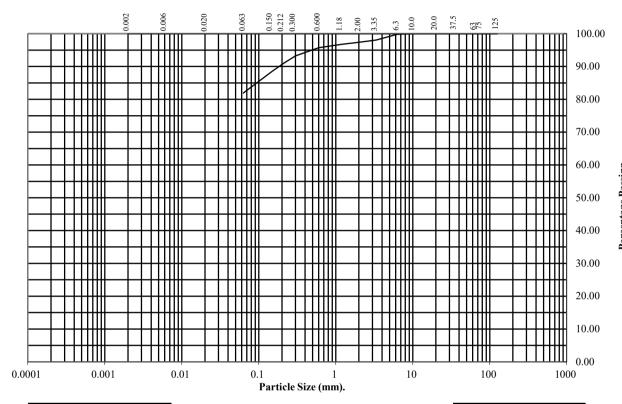
Sample Type: Liner

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	100
6.3	99
3.35	98
2	97
1.18	96
0.6	94
0.3	92
0.212	89
0.15	85
0.063	69

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 3 28 69

Remarks:

See Summary of Soil Descriptions


Contract No:
PSL20/6283
Client Ref:
14-451

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: WS108 Top Depth (m): 0.50

Sample Number: Base Depth(m): 1.00

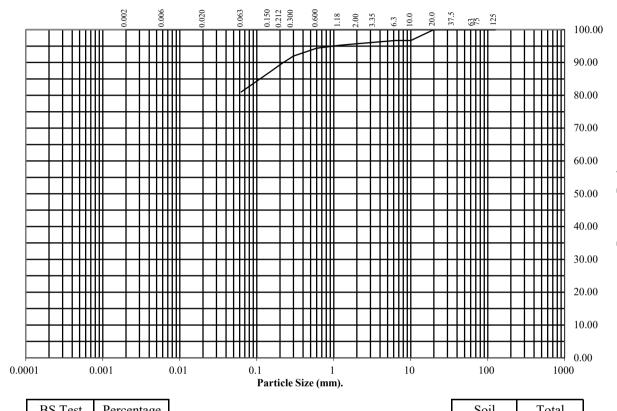
Sample Type: Liner

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	100
6.3	100
3.35	98
2	97
1.18	97
0.6	96
0.3	93
0.212	91
0.15	89
0.063	82

Soil	Total		
Fraction	Percentage		
Cobbles Gravel Sand Silt/Clay	0 3 15 82		

Remarks:

See Summary of Soil Descriptions


Contract No:
PSL20/6283
Client Ref:
14-451

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: WS114 Top Depth (m): 0.50

Sample Number: Base Depth(m): 1.00

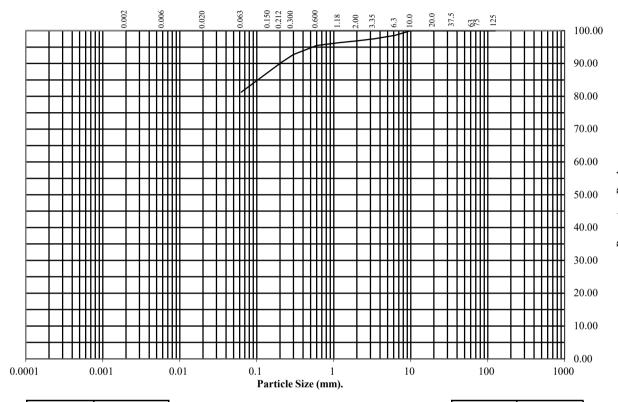
Sample Type: Liner

Sieve (mm) Passing 125 100 75 100 63 100 37.5 100 20 100 10 97 6.3 97 3.35 96 2 96 1.18 95 0.6 94 0.3 92	BS Test	Percentage		
75 100 63 100 37.5 100 20 100 10 97 6.3 97 3.35 96 2 96 1.18 95 0.6 94	Sieve (mm)	Passing		
63 37.5 20 100 10 97 6.3 97 3.35 96 2 96 1.18 95 0.6	125	100		
37.5 100 20 100 10 97 6.3 97 3.35 96 2 96 1.18 95 0.6 94	75	100		
20 100 10 97 6.3 97 3.35 96 2 96 1.18 95 0.6 94	63	100		
10 97 6.3 97 3.35 96 2 96 1.18 95 0.6 94	37.5	100		
6.3 3.35 2 96 1.18 95 0.6 94	20	100		
3.35 96 2 96 1.18 95 0.6 94	10	97		
2 96 1.18 95 0.6 94	6.3	97		
1.18 95 0.6 94	3.35	96		
0.6 94	2			
	1.18			
0.3 92	0.6	94		
0.5	0.3	92		
0.212 90	0.212	90		
0.15 87	0.15	87		
0.063 81	0.063 81			

Soil	Total		
Fraction	Percentage		
Cobbles Gravel Sand Silt/Clay	0 4 15 81		

Remarks:

See Summary of Soil Descriptions


Contract No:
PSL20/6283
Client Ref:
14-451

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: WS117 Top Depth (m): 0.50

Sample Number: Base Depth(m): 2.00

Sample Type: Liner

BS Test	Percentage			
Sieve (mm)	Passing			
125	100			
75	100			
63	100			
37.5	100			
20	100			
10	100			
6.3	99 98			
3.35				
2	97			
1.18	96			
0.6	95			
0.3	93			
0.212	90			
0.15	88			
0.063	81			

Soil	Total		
Fraction	Percentage		
Cobbles Gravel Sand Silt/Clay	0 3 16 81		

Remarks:

See Summary of Soil Descriptions

Contract No:
PSL20/6283
Client Ref:
14-451

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: WS125 Top Depth (m): 1.50

Sample Number: Base Depth(m): 2.00

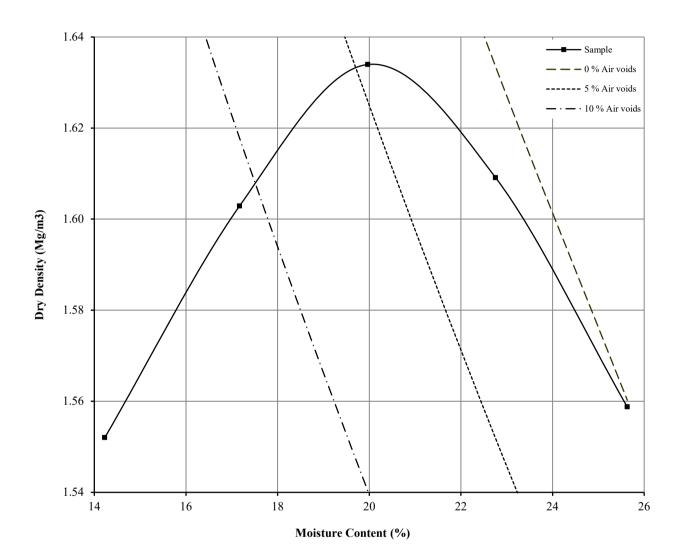
Sample Type: Liner

BS Test	Percentage		
Sieve (mm)	Passing		
125	100		
75	100		
63	100		
37.5	100		
20	100		
10	95		
6.3	95 95		
3.35			
2	95 94		
1.18			
0.6	93		
0.3	91		
0.212	89		
0.15	86		
0.063	80		

Soil	Total		
Fraction	Percentage		
Cobbles Gravel Sand Silt/Clay	0 5 15 80		

Remarks:

See Summary of Soil Descriptions


Contract No:
PSL20/6283
Client Ref:
14-451

BS 1377: Part 4: Clause 3.3: 1990

Hole Number: WS102 Top Depth (m): 0.50

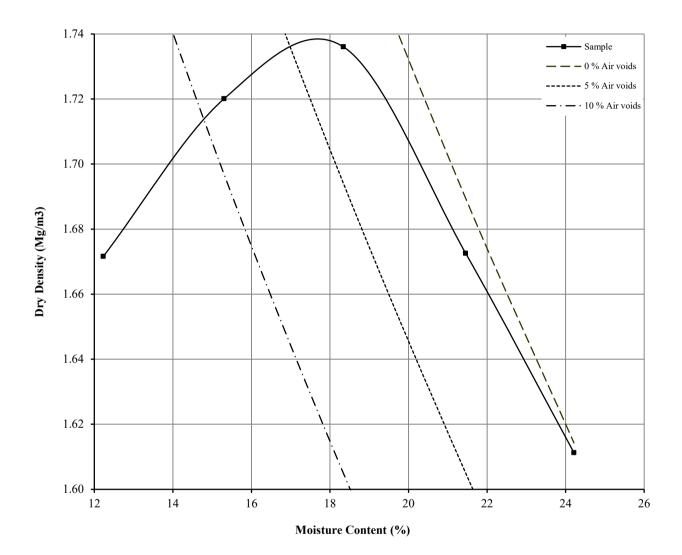
Sample Number: Base Depth (m): 1.00

Sample Type: Liner

Initial Moisture Content:		26	Method of Compaction:	2.5kg	Separate Samples
Particle Density (Mg/m3):	2.6	Assumed	Material Retained on 37.5 mm Test Sieve (%):		0
Maximum Dry Density (Mg/m3): 1.63		1.63	Material Retained on 20.0 mm Test Sieve	(%):	0
Optimum Moisture Content (%): 20					
Remarks See summary of s	oil descriptions		•		

Remarks See summary of soil descriptions

Albatross and Razorbill


Contract PSL20/6283 Client Ref 14-451

BS 1377: Part 4: Clause 3.3: 1990

Hole Number: WS108 Top Depth (m): 0.50

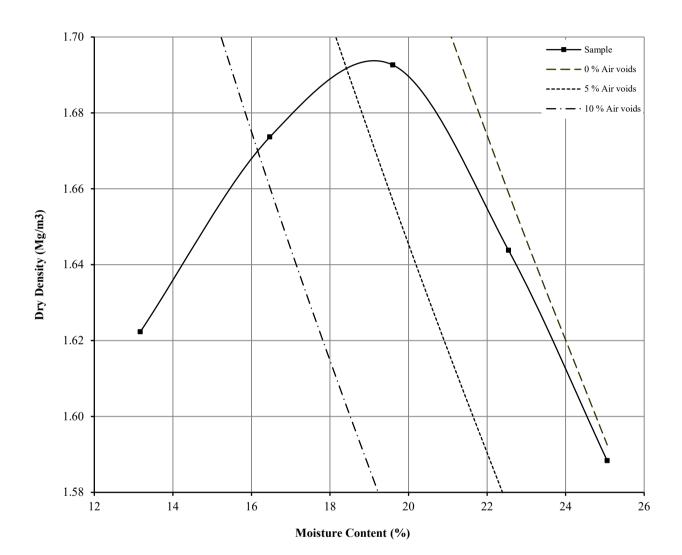
Sample Number: Base Depth (m): 1.00

Sample Type: Liner

Initial Moisture Content:		21	Method of Compaction:	2.5kg	Separate Samples
Particle Density (Mg/m3): 2.65		Assumed	Material Retained on 37.5 mm Test Sieve	0	
Maximum Dry Density (Mg/m3):		1.74	Material Retained on 20.0 mm Test Sieve	0	
Optimum Moisture Content (%):		18			
Remarks See summary of s	oil descriptions		•		

Remarks See summary of soil descriptions

Albatross and Razorbill


Contract PSL20/6283 Client Ref 14-451

BS 1377: Part 4: Clause 3.3: 1990

Hole Number: WS114 Top Depth (m): 0.50

Sample Number: Base Depth (m): 1.00

Sample Type: Liner

Initial Moisture Content:		23	Method of Compaction:	2.5kg	Separate Samples
Particle Density (Mg/m3): 2.65		Assumed	Material Retained on 37.5 mm Test Sieve	0	
Maximum Dry Density (Mg/m3):		1.69	Material Retained on 20.0 mm Test Sieve	0	
Optimum Moisture Content (%):		20			
Remarks See summary of s	oil descriptions				

	Contract
Albatuage and Dagawhill	PSL20/6283
Albatross and Razorbill	Client Ref
	14 451

BS 1377: Part 4: Clause 3.3: 1990

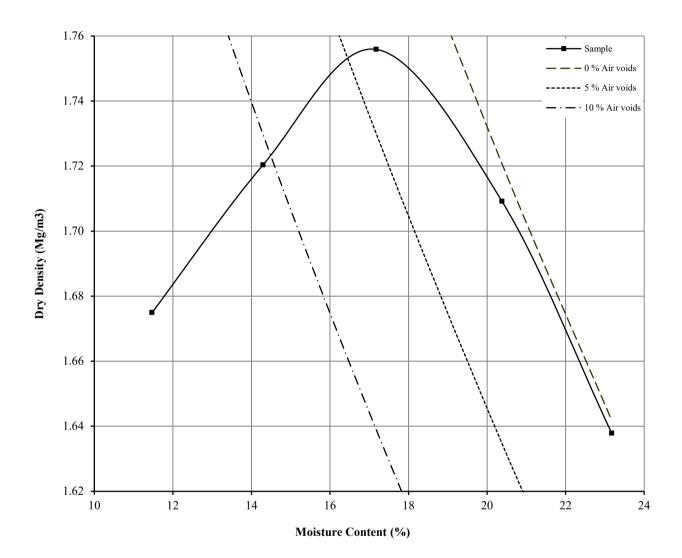
WS117 Top Depth (m): **Hole Number:** 1.50

Sample Number: Base Depth (m): 2.00

Sample Type: Liner

Initial Moisture Content:		20	Method of Compaction:	2.5kg	Separate Samples
Particle Density (Mg/m3): 2.7		Assumed	Material Retained on 37.5 mm Test Sieve	0	
Maximum Dry Density (Mg/m3):		1.80	Material Retained on 20.0 mm Test Sieve	0	
Optimum Moisture Content (%):		17			
Remarks See summary of s	soil descriptions		•		

Albatross and Razorbill


Contract PSL20/6283 **Client Ref** 14-451

BS 1377: Part 4: Clause 3.3: 1990

Hole Number: WS125 Top Depth (m): 1.50

Sample Number: Base Depth (m): 2.00

Sample Type: Liner

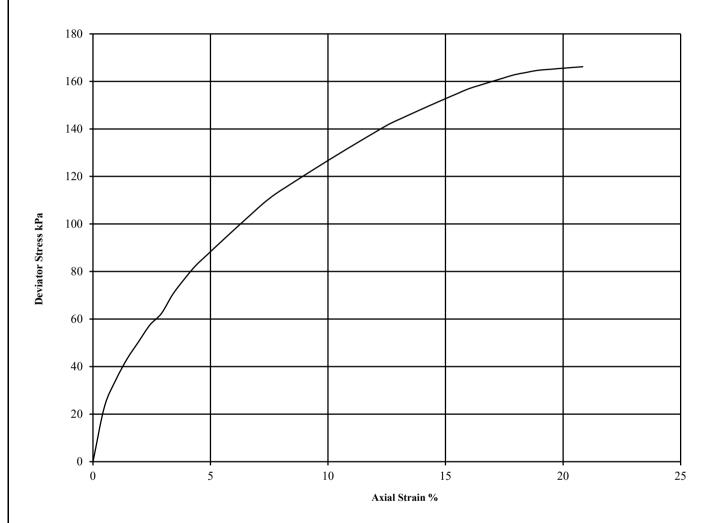
Initial Moisture Content:		20	Method of Compaction:	2.5kg	Separate Samples
Particle Density (Mg/m3): 2.65		Assumed	Material Retained on 37.5 mm Test Sieve	0	
Maximum Dry Density (Mg/m3):		1.76	Material Retained on 20.0 mm Test Sieve	0	
Optimum Moisture Content (%):		17			
Remarks See summary of s	oil descriptions		•		

Remarks See summary of soil descriptions

Albatross and Razorbill

Contract PSL20/6283 Client Ref 14-451

UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION


WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377: Part7: 1990: Clause 8

Hole Number: WS103 Top Depth (m): 2.50

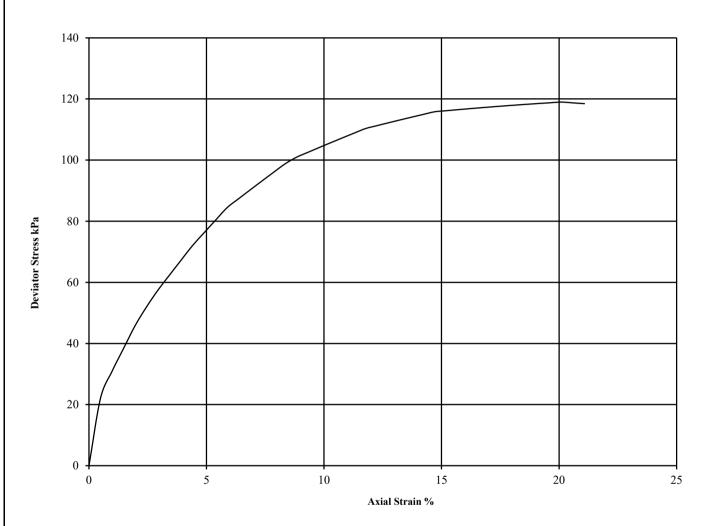
Sample Number: Base Depth (m): 3.00

Sample Type Liner

Diamete	er (mm):	63	Height	(mm):	130	Test:	UU Sing	gle Stage	Remarks:
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode	Undisturbed Sample
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample taken from top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of strain = 2 %/min
					(kPa)	(kPa)			Latex Membrane used 0.2 mm thick,
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction applied 0.49
1	20	2.10	1.75	75	166	83	20.8	Plastic	See summary of soil descriptions

Contract No:
PSL20/6283
Client Ref:
14-451

UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION


WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377: Part7: 1990: Clause 8

Hole Number: WS106 Top Depth (m): 2.50

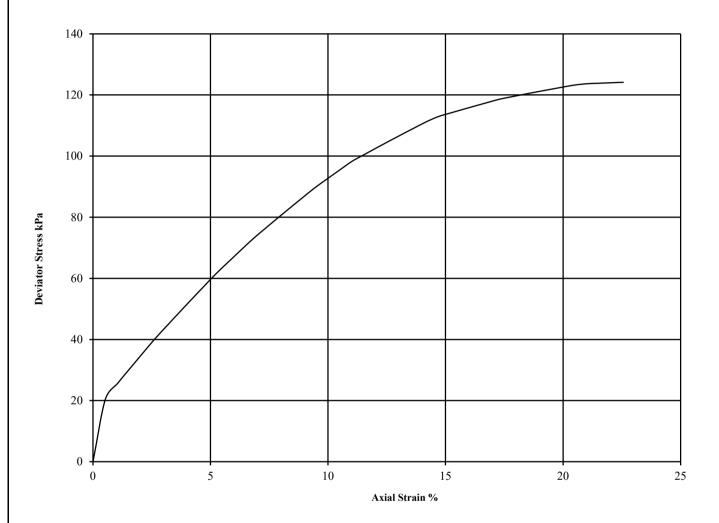
Sample Number: Base Depth (m): 3.00

Sample Type Liner

Diamete	er (mm):	75	Height	(mm):	153	Test:	UU Sing	gle Stage	Remarks:
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode	Undisturbed Sample
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample taken from top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of strain = 2 %/min
					(kPa)	(kPa)			Latex Membrane used 0.2 mm thick,
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction applied 0.43
1	21	2.06	1.71	55	119	59	20.1	Plastic	See summary of soil descriptions

Contract No:
PSL20/6283
Client Ref:
14-451

UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION


WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377: Part7: 1990: Clause 8

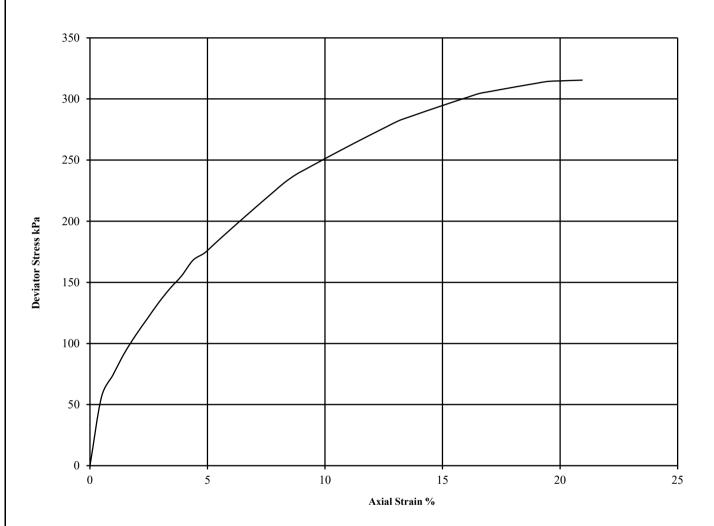
Hole Number: WS108 Top Depth (m): 0.50

Sample Number: Base Depth (m): 1.00

Sample Type Liner

Diamete	er (mm):	85	Height	(mm):	162	Test:	UU Sing	gle Stage	Remarks:
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode	Undisturbed Sample
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample taken from top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of strain = 2 %/min
					(kPa)	(kPa)			Latex Membrane used 0.2 mm thick,
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction applied 0.38
1	21	2.08	1.72	15	124	62	22.6	Plastic	See summary of soil descriptions

Contract No:
PSL20/6283
Client Ref:
14-451


WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377: Part7: 1990: Clause 8

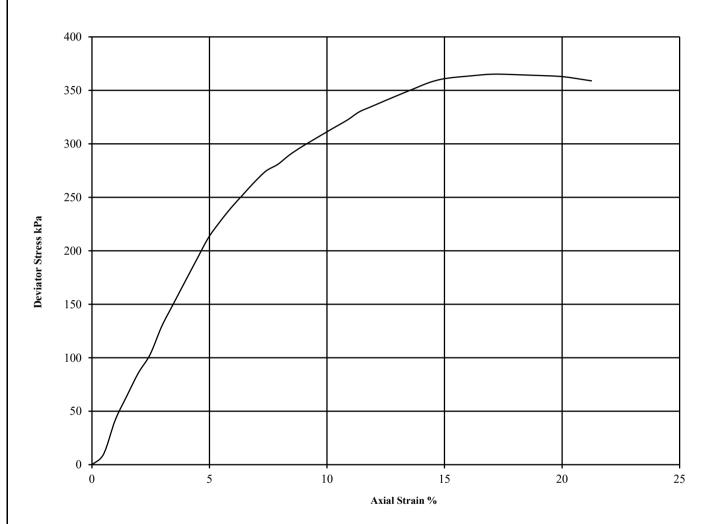
Hole Number: WS111 Top Depth (m): 1.50

Sample Number: Base Depth (m): 2.00

Sample Type Liner

Diamete	er (mm):	75	Height	(mm):	154	Test:	UU Single Stage		Remarks:
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode	Undisturbed Sample
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample taken from top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of strain = 2 %/min
					(kPa)	(kPa)			Latex Membrane used 0.2 mm thick,
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction applied 0.43
1	19	2.14	1.80	35	315	158	20.9	Plastic	See summary of soil descriptions

Contract No:
PSL20/6283
Client Ref:
14-451


WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377: Part7: 1990: Clause 8

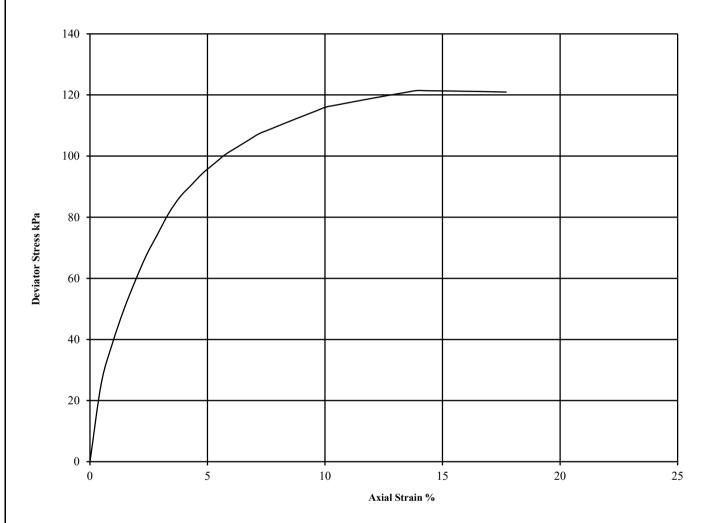
Hole Number: WS112 Top Depth (m): 1.50

Sample Number: Base Depth (m): 2.00

Sample Type Liner

Diamete	er (mm):	85	Height	(mm):	172	Test:	UU Single Stage		Remarks:
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode	Undisturbed Sample
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample taken from top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of strain = 2 %/min
					(kPa)	(kPa)			Latex Membrane used 0.2 mm thick,
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction applied 0.40
1	19	2.12	1.78	35	365	183	17.3	Plastic	See summary of soil descriptions

Albatross and Razorbill


WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377: Part7: 1990: Clause 8

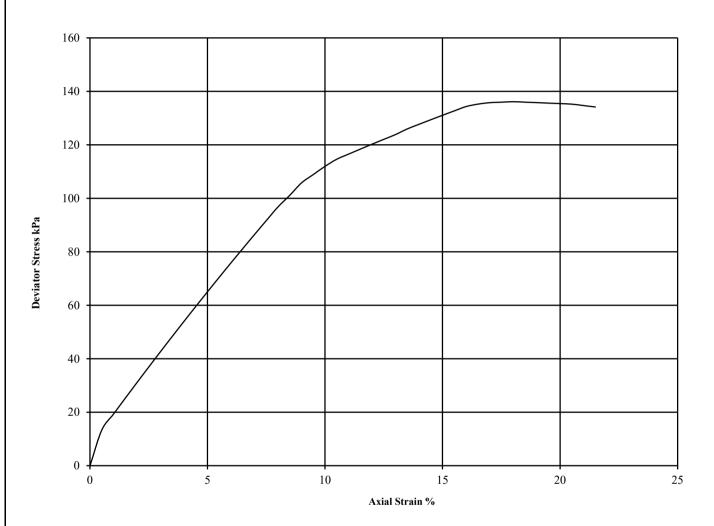
Hole Number: WS115 Top Depth (m): 1.50

Sample Number: Base Depth (m): 2.00

Sample Type Liner

Diamete	er (mm):	67	Height	(mm):	140	Test:	UU Sing	gle Stage	Remarks:
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode	Undisturbed Sample
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample taken from top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of strain = 2 %/min
					(kPa)	(kPa)			Latex Membrane used 0.2 mm thick,
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction applied 0.51
1	26	2.08	1.65	55	121	61	13.9	Intermediate	See summary of soil descriptions

Contract No:
PSL20/6283
Client Ref:
14-451


WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377: Part7: 1990: Clause 8

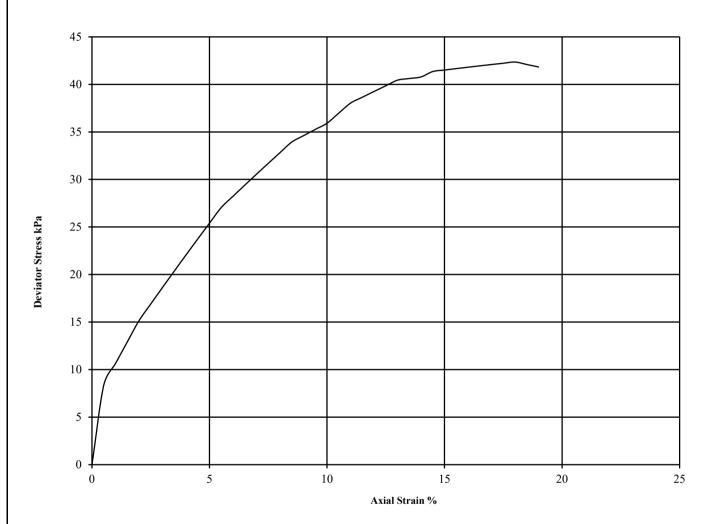
Hole Number: WS117 Top Depth (m): 1.50

Sample Number: Base Depth (m): 2.00

Sample Type Liner

Diamete	er (mm):	75	Height	(mm):	150	Test:	UU Single Stage		Remarks:
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode	Undisturbed Sample
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample taken from top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of strain = 2 %/min
					(kPa)	(kPa)			Latex Membrane used 0.2 mm thick,
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction applied 0.44
1	20	2.06	1.71	35	136	68	18.0	Plastic	See summary of soil descriptions

Contract No:
PSL20/6283
Client Ref:
14-451


WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377: Part7: 1990: Clause 8

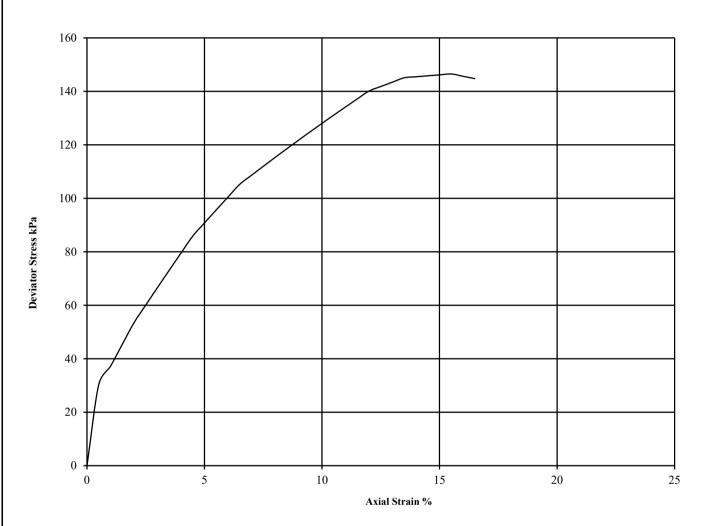
Hole Number: WS118 Top Depth (m): 1.50

Sample Number: Base Depth (m): 2.00

Sample Type Liner

Diamete	er (mm):	70	Height	(mm):	140	Test:	UU Single Stage		Remarks:
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode	Undisturbed Sample
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample taken from top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of strain = 2 %/min
					(kPa)	(kPa)			Latex Membrane used 0.2 mm thick,
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction applied 0.47
1	27	1.99	1.57	35	42	21	18.0	Plastic	See summary of soil descriptions

Contract No:
PSL20/6283
Client Ref:
14-451


WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377: Part7: 1990: Clause 8

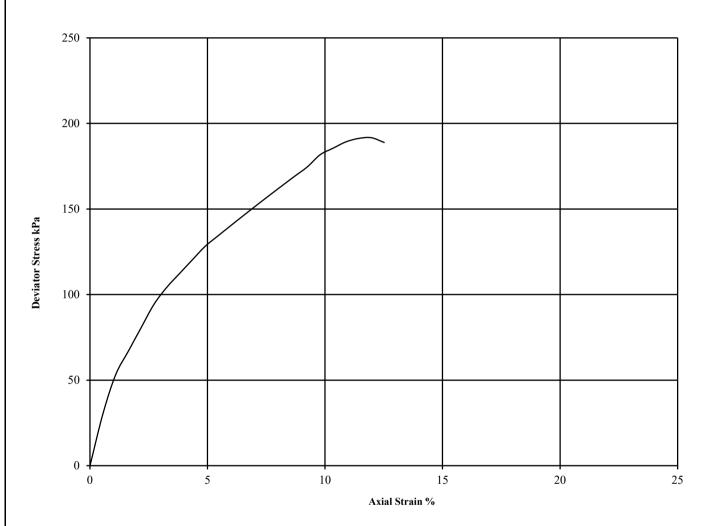
Hole Number: WS120 Top Depth (m): 2.50

Sample Number: Base Depth (m): 3.00

Sample Type Liner

Diamete	Diameter (mm): 60		Height (mm):		120	Test:	UU Sing	gle Stage	Remarks:
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode	Undisturbed Sample
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample taken from top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of strain = 2 %/min
					(kPa)	(kPa)			Latex Membrane used 0.2 mm thick,
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction applied 0.55
1	19	2.13	1.78	55	146	73	15.5	Plastic	See summary of soil descriptions

Contract No:
PSL20/6283
Client Ref:
14-451


WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377: Part7: 1990: Clause 8

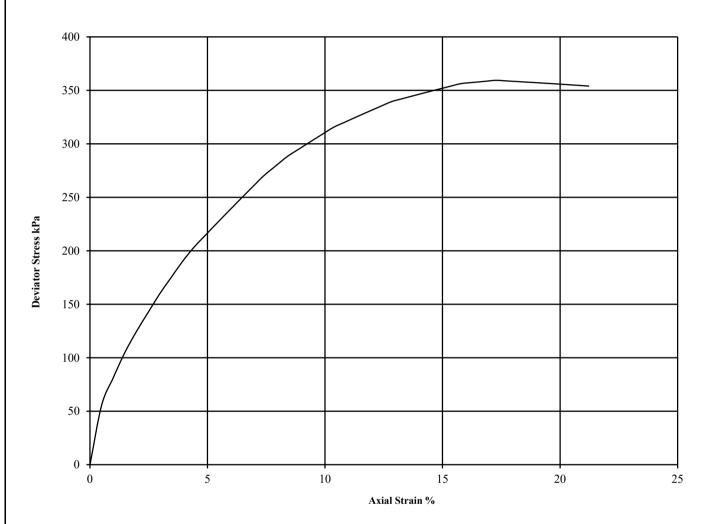
Hole Number: WS121 Top Depth (m): 0.50

Sample Number: Base Depth (m): 1.00

Sample Type Liner

Diamete	er (mm):	80	Height	(mm):	147	Test:	UU Single Stage		Remarks:
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode	Undisturbed Sample
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample taken from top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of strain = 2 %/min
					(kPa)	(kPa)			Latex Membrane used 0.2 mm thick,
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction applied 0.44
1	17	2.18	1.86	15	192	96	12.0	Brittle	See summary of soil descriptions

Contract No:
PSL20/6283
Client Ref:
14-451


WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377: Part7: 1990: Clause 8

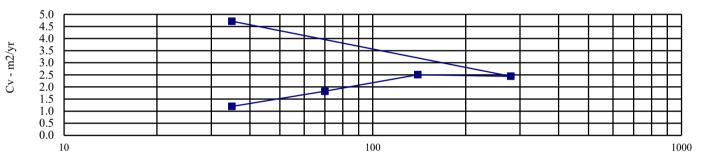
Hole Number: WS123 Top Depth (m): 2.50

Sample Number: Base Depth (m): 3.00

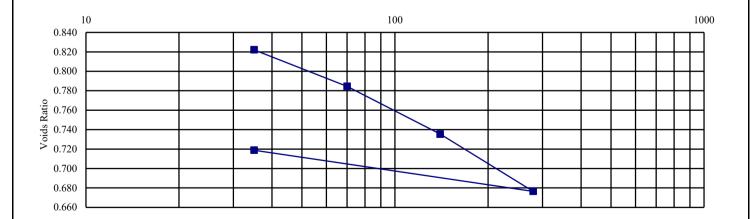
Sample Type Liner

Diamete	er (mm):	75	Height	(mm):	152	Test:	UU Single Stage		Remarks:	
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode	Undisturbed Sample	
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample taken from top of tube	
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of strain = 2 %/min	
					(kPa)	(kPa)			Latex Membrane used 0.2 mm thick,	
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction applied 0.44	
1	17	2.14	1.82	55	359	180	17.3	Plastic	See summary of soil descriptions	

Contract No:
PSL20/6283
Client Ref:
14-451


BS 1377: Part 5: 1990: Clause 3

Hole Number: WS101 Top Depth (m): 1.50

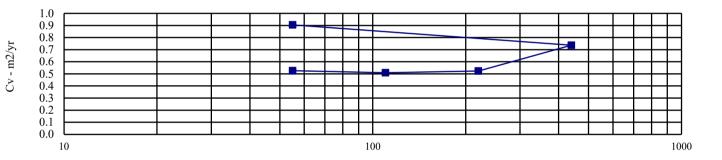

Sample Number: Base Depth (m): 2.00

Sample Type: Liner

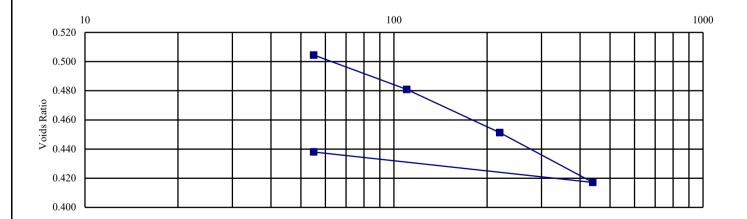
Initial Conditions		Pressure Range		Mv	Cv	Specimen location		
Moisture Content (%):	37	kPa	kPa		m2/yr	within tube:	Top	
Bulk Density (Mg/m3):	1.89	0	35	1.472	1.194	Method used to		
Dry Density (Mg/m3):	1.38	35	70	0.590	1.821	determine CV:	T90	
Voids Ratio:	0.921	70	140	0.393	2.507	Nominal temperature		
Degree of saturation:	106.6	140	280	0.242	2.440	during test 'C:	20	
Height (mm):	20.208	280	35	0.103	4.713	Remarks:		
Diameter (mm)	74.928					See summary of soil descriptions		
Particle Density (Mg/m3):	2.65							
Assumed	2.03							

Pressure -kPa

Albatross and Razorbill


BS 1377: Part 5: 1990: Clause 3

Hole Number: WS106 Top Depth (m): 2.50

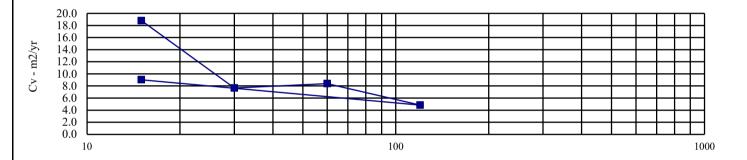

Sample Number: Base Depth (m): 3.00

Sample Type: Liner

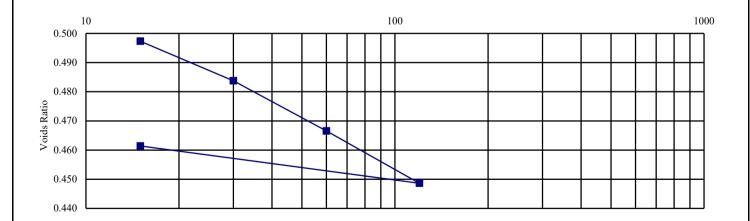
Initial Conditions		Pressure Range		Mv	Cv	Specimen location		
Moisture Content (%):	21	kPa	kPa		m2/yr	within tube:	Top	
Bulk Density (Mg/m3):	2.07	0	55	0.464	0.526	Method used to		
Dry Density (Mg/m3):	1.72	55	110	0.285	0.508	determine CV:	T90	
Voids Ratio:	0.544	110	220	0.182	0.523	Nominal temperature		
Degree of saturation:	100.6	220	440	0.107	0.736	during test 'C:	20	
Height (mm):	19.966	440	55	0.038	0.905	Remarks:		
Diameter (mm)	50.078					See summary of soil descriptions		
Particle Density (Mg/m3):	2.65							
Assumed	2.03							

Pressure -kPa

Albatross and Razorbill


BS 1377: Part 5: 1990: Clause 3

Hole Number: WS108 Top Depth (m): 0.50

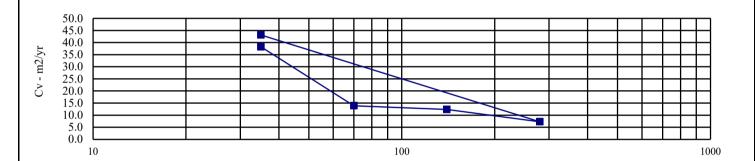

Sample Number: Base Depth (m): 1.00

Sample Type: Liner

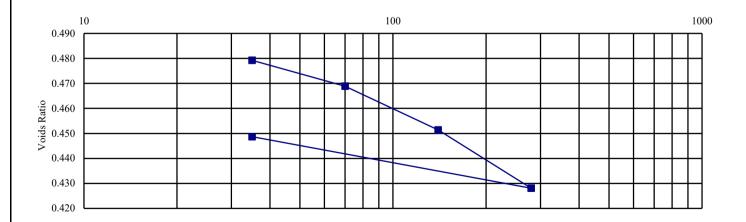
Initial Conditions		Pressure Range		Mv	Cv	Specimen location		
Moisture Content (%):	20	kPa	kPa		m2/yr	within tube:	Тор	
Bulk Density (Mg/m3):	2.12	0	15	0.394	18.798	Method used to		
Dry Density (Mg/m3):	1.76	15	30	0.603	7.653	determine CV:	T90	
Voids Ratio:	0.506	30	60	0.387	8.379	Nominal temperature		
Degree of saturation:	106.9	60	120	0.204	4.843	during test 'C:	20	
Height (mm):	20.136	120	15	0.084	9.026	Remarks:		
Diameter (mm)	75.055					See summary of soil descriptions		
Particle Density (Mg/m3):	2.65							
Assumed	2.03							

Pressure -kPa

Albatross and Razorbill


BS 1377: Part 5: 1990: Clause 3

Hole Number: WS111 Top Depth (m): 1.50

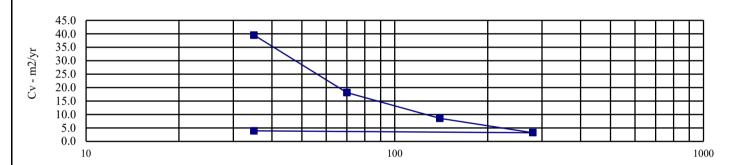

Sample Number: Base Depth (m): 2.00

Sample Type: Liner

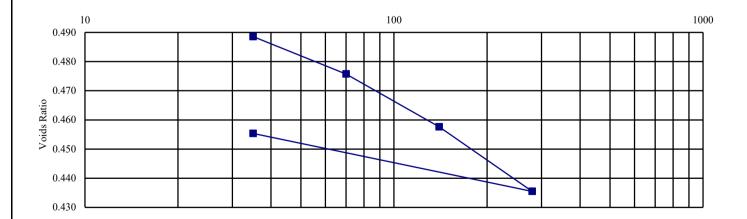
Initial Conditions		Pressure Range		Mv	Cv	Specimen location		
Moisture Content (%):	20	kPa	kPa		m2/yr	within tube:	Тор	
Bulk Density (Mg/m3):	2.13	0	35	0.148	38.208	Method used to		
Dry Density (Mg/m3):	1.78	35	70	0.200	13.904	determine CV:	T90	
Voids Ratio:	0.487	70	140	0.170	12.334	Nominal temperature		
Degree of saturation:	106.6	140	280	0.115	7.270	during test 'C:	20	
Height (mm):	19.852	280	35	0.059	43.134	Remarks:		
Diameter (mm)	49.868					See summary of soil descriptions		
Particle Density (Mg/m3):	2.65							
Assumed	2.03							

Pressure -kPa

Albatross and Razorbill


BS 1377: Part 5: 1990: Clause 3

Hole Number: WS112 Top Depth (m): 1.50

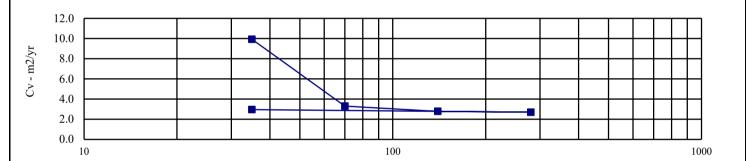

Sample Number: Base Depth (m): 2.00

Sample Type: Liner

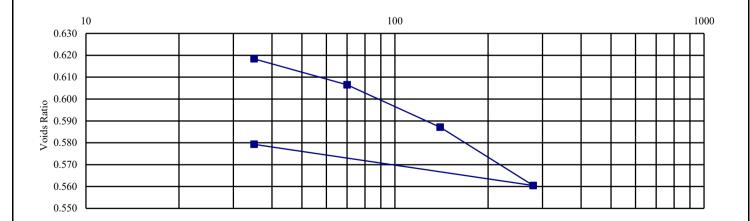
Initial Conditions		Pressure Range		Mv	Cv	Specimen location		
Moisture Content (%):	20	kPa	kPa		m2/yr	within tube:	Тор	
Bulk Density (Mg/m3):	2.12	0	35	0.264	39.497	Method used to		
Dry Density (Mg/m3):	1.76	35	70	0.246	18.115	determine CV:	T90	
Voids Ratio:	0.502	70	140	0.175	8.549	Nominal temperature		
Degree of saturation:	106.6	140	280	0.108	3.218	during test 'C:	20	
Height (mm):	19.894	280	35	0.056	3.886	Remarks:		
Diameter (mm)	74.895					See summary of soil descriptions		
Particle Density (Mg/m3):	2.65							
Assumed	2.03							

Pressure -kPa

Albatross and Razorbill


BS 1377: Part 5: 1990: Clause 3

Hole Number: WS115 Top Depth (m): 1.50

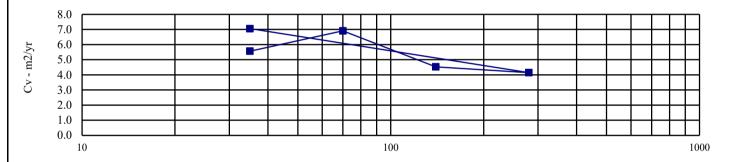

Sample Number: Base Depth (m): 2.00

Sample Type: Liner

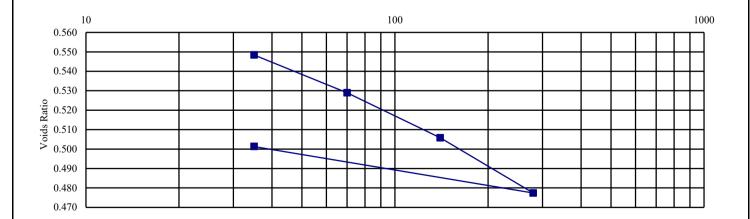
Initial Conditions		Pressure Range		Mv	Cv	Specimen location	
Moisture Content (%):	26	kPa	kPa		m2/yr	within tube:	Тор
Bulk Density (Mg/m3):	2.05	0	35	0.154	9.925	Method used to	
Dry Density (Mg/m3):	1.63	35	70	0.209	3.291	determine CV:	T90
Voids Ratio:	0.627	70	140	0.173	2.778	Nominal temperature	
Degree of saturation:	109.1	140	280	0.120	2.688	during test 'C:	20
Height (mm):	20.028	280	35	0.049	2.955	Remarks:	
Diameter (mm)	49.983					See summary of soil descriptions	
Particle Density (Mg/m3):	2.65						
Assumed	2.03						

Pressure -kPa

Albatross and Razorbill


BS 1377: Part 5: 1990: Clause 3

Hole Number: WS117 Top Depth (m): 1.50

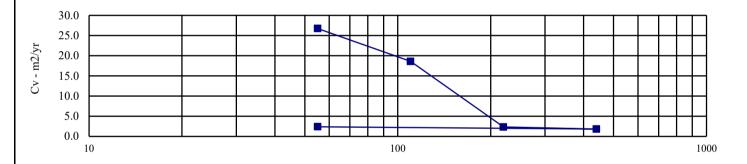

Sample Number: Base Depth (m): 2.00

Sample Type: Liner

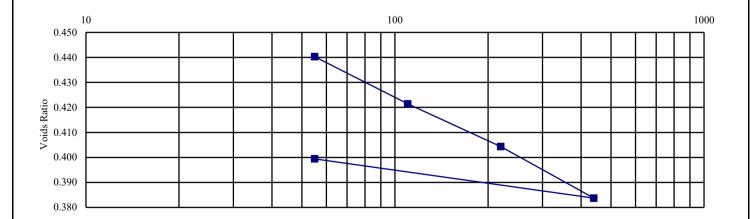
Initial Conditions		Pressure Range		Mv	Cv	Specimen location		
Moisture Content (%):	21	kPa	kPa		m2/yr	within tube:	Top	
Bulk Density (Mg/m3):	2.06	0	35	0.300	5.562	Method used to		
Dry Density (Mg/m3):	1.69	35	70	0.359	6.906	determine CV:	T90	
Voids Ratio:	0.565	70	140	0.216	4.532	Nominal temperature		
Degree of saturation:	100.3	140	280	0.135	4.145	during test 'C:	20	
Height (mm):	19.88	280	35	0.066	7.053	Remarks:		
Diameter (mm)	49.973					See summary of soil descriptions		
Particle Density (Mg/m3):	2.65							
Assumed	2.03							

Pressure -kPa

Albatross and Razorbill


BS 1377: Part 5: 1990: Clause 3

Hole Number: WS123 Top Depth (m): 2.50

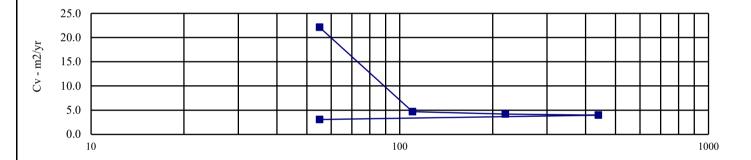

Sample Number: Base Depth (m): 3.00

Sample Type: Liner

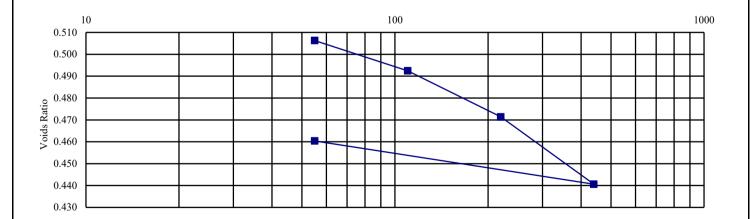
Initial Conditions		Pressure Range		Mv	Cv	Specimen location		
Moisture Content (%):	18	kPa	kPa		m2/yr	within tube:	Тор	
Bulk Density (Mg/m3):	2.14	0	55	0.286	26.755	Method used to		
Dry Density (Mg/m3):	1.81	55	110	0.238	18.592	determine CV:	T90	
Voids Ratio:	0.463	110	220	0.109	2.325	Nominal temperature		
Degree of saturation:	104.3	220	440	0.067	1.801	during test 'C:	20	
Height (mm):	19.614	440	55	0.030	2.376	Remarks:		
Diameter (mm)	74.9					See summary of soil descriptions		
Particle Density (Mg/m3):	2.65							
Assumed	2.03							

Pressure -kPa

Albatross and Razorbill


BS 1377: Part 5: 1990: Clause 3

Hole Number: WS120 Top Depth (m): 2.50


Sample Number: Base Depth (m): 3.00

Sample Type: Liner

Initial Conditions	Pressure Range		Mv	Cv	Specimen location			
Moisture Content (%):	20	kPa	kPa		m2/yr	within tube:	Тор	
Bulk Density (Mg/m3):	2.09	0	55	0.116	22.116	Method used to		
Dry Density (Mg/m3):	1.75	55	110	0.167	4.688	determine CV:	T90	
Voids Ratio:	0.516	110	220	0.128	4.192	Nominal temperature		
Degree of saturation:	101.0	220	440	0.095	3.958	during test 'C:	20	
Height (mm):	20.066	440	55	0.036	3.078	Remarks:		
Diameter (mm)	50.083					See summary of soil descriptions		
Particle Density (Mg/m3):	2.65							
Assumed	2.03							

Pressure -kPa

Albatross and Razorbill

Certificate Number 20-23352

24-Nov-20

Client Professional Soils Laboratory Ltd

5/7 Hexthorpe Road

Hexthorpe DN4 0AR

Our Reference 20-23352

Client Reference PSL20/6283

Order No (not supplied)

Contract Title Albatross and Razorbill

Description 2 Soil samples.

Date Received 17-Nov-20

Date Started 17-Nov-20

Date Completed 24-Nov-20

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Summary of Chemical Analysis Soil Samples

Our Ref 20-23352 Client Ref PSL20/6283 Contract Title Albatross and Razorbill

Lab No	1762333	1762334
Sample ID	WS101	WS103
Depth	1.50-2.00	2.50-3.00
Other ID		
Sample Type	SOIL	SOIL
Sampling Date		n/s
Sampling Time	n/s	n/s

lest	ivietnod	LOD	Units		
Metals					
Magnesium Aqueous Extract	DETSC 2076*	10	mg/l	< 10	< 10
Inorganics	•				
рН	DETSC 2008#		рН	8.2	8.1
Chloride Aqueous Extract	DETSC 2055	1	mg/l	86	7.1
Nitrate Aqueous Extract as NO3	DETSC 2055	1	mg/l	< 1.0	1.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	52	38
Sulphur as S, Total	DETSC 2320	0.01	%	0.12	0.08
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.02	< 0.01

Information in Support of the Analytical Results

Our Ref 20-23352 Client Ref PSL20/6283

Contract Albatross and Razorbill

Containers Received & Deviating Samples

Date container for

Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1762333	WS101 1.50-2.00 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (30 days),	
				Total Sulphur ICP (7 days), Total Sulphate ICP (30	
				days), Metals ICP Prep (182 days), pH + Conductivity	
				17 days)	
1762334	WS103 2.50-3.00 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (30 days),	
				Total Sulphur ICP (7 days), Total Sulphate ICP (30	
				days), Metals ICP Prep (182 days), pH + Conductivity	
				(7 days)	

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Certificate Number 20-24284

02-Dec-20

Client Professional Soils Laboratory Ltd

5/7 Hexthorpe Road

Hexthorpe DN4 0AR

Our Reference 20-24284

Client Reference PSL20/6283

Order No (not supplied)

Contract Title 14-451 Albatross and Razorbill

Description 3 Soil samples.

Date Received 27-Nov-20

Date Started 27-Nov-20

Date Completed 02-Dec-20

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Summary of Chemical Analysis Soil Samples

Our Ref 20-24284 Client Ref PSL20/6283

Contract Title 14-451 Albatross and Razorbill

Lab No	1768341	1768342	1768343
.Sample ID	WS118	WS120	WS121
Depth	1.50-2.00	2.50-3.00	0.50-1.00
Other ID			
Sample Type	SOIL	SOIL	SOIL
Sampling Date	n/s	n/s	n/s
Sampling Time	n/s	n/s	n/s

rest	ivietnoa	LOD	Units			
Inorganics						
рН	DETSC 2008#		рН	8.2	7.9	8.1
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	32	22	31

Information in Support of the Analytical Results

Our Ref 20-24284 *Client Ref* PSL20/6283

Contract 14-451 Albatross and Razorbill

Containers Received & Deviating Samples

Inappropriate
Container for
Sample ID
Sampled
Containers Received
Holding time exceeded for tests

WS118 1.50-2.00 SOIL
PT 1L
Sample date not supplied, Anions 2:1 (30 days), pH +

Lab NO	Sample 1D	Janipieu	Containers Neceived	noiding time exceeded for tests	tests
1768341	WS118 1.50-2.00 SOIL		PT 1L	T 1L Sample date not supplied, Anions 2:1 (30 days), pH +	
				Conductivity (7 days)	
1768342	WS120 2.50-3.00 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), pH +	
				Conductivity (7 days)	
1768343	WS121 0.50-1.00 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), pH +	
				Conductivity (7 days)	

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-

Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Certificate Number 20-24431

04-Dec-20

Client Professional Soils Laboratory Ltd

5/7 Hexthorpe Road

Hexthorpe DN4 0AR

Our Reference 20-24431

Client Reference PSL20/6283

Order No (not supplied)

Contract Title Colindale Station Ground Investigation

Description One Soil sample.

Date Received 30-Nov-20

Date Started 30-Nov-20

Date Completed 04-Dec-20

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Summary of Chemical Analysis Soil Samples

Our Ref 20-24431 Client Ref PSL20/6283

Contract Title Colindale Station Ground Investigation

Lab No	1769225
.Sample ID	WS115
Depth	1.50-2.00
Other ID	
Sample Type	SOIL
Sampling Date	n/s
Sampling Time	n/s

Test	Method	LOD	Units	•
Inorganics				
рН	DETSC 2008#		рН	8.2
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	20

Information in Support of the Analytical Results

Our Ref 20-24431 Client Ref PSL20/6283

Contract Colindale Station Ground Investigation

Containers Received & Deviating Samples

Inappropriate

Date containers Received Holding time exceeded for tests tests

Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1769225	WS115 1.50-2.00 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (30 days), pH +	
				Conductivity (7 days)	

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report